

D6.3
Site Acceptance Test Plan

Version: 1.1 - Final

September 2018

D6.3: Site Acceptance Test Plan

INTER-IoT

INTER-IoT aim is to design, implement and test a framework that will allow
interoperability among different Internet of Things (IoT) platforms.

Most current existing IoT developments are based on “closed-loop” concepts, focusing
on a specific purpose and being isolated from the rest of the world. Integration between
heterogeneous elements is usually done at device or network level, and is just limited
to data gathering. Our belief is that a multi-layered approach integrating different IoT
devices, networks, platforms, services and applications will allow a global continuum of
data, infrastructures and services that will enhance different IoT scenarios. Moreover,
reuse and integration of existing and future IoT systems will be facilitated, creating a de
facto global ecosystem of interoperable IoT platforms.

In the absence of global IoT standards, the INTER-IoT results will allow any company
to design and develop new IoT devices or services, leveraging on the existing
ecosystem, and bring them to market as fast as possible.

INTER-IoT has been financed by the Horizon 2020 initiative of the European
Commission, contract 687283.

D6.3: Site Acceptance Test Plan

1

INTER-IoT

Site Acceptance Test Plan

Version: 1.1

Security: Confidential

26 September 2018

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

D6.3: Site Acceptance Test Plan

2

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and
may not be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT
consortium (including the Commission Services) and may not be disclosed except in accordance with
the consortium agreement.
The commercial use of any information contained in this document may require a license from the
proprietor of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the
information contained in this document is capable of use, nor that use of the information is free from
risk, and accepts no liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

D6.3: Site Acceptance Test Plan

3

Executive Summary

This document describes the Site Acceptance Test (SAT) plans of the INTER-IoT project.

During development units and components are tested and validated by the developers. This
applies to the IoT framework components as well as to the project specific units and
components. When all the components needed for the project are complete, tested and
validated they are integrated into the system as defined for this project.

The system has already undergone the Factory Acceptance Test to test the readiness of the
system. This is done in a LAB setup which approached the actual field deployment as much
as possible. As the SAT has been successfully executed and has proved the system in a
“factory” environment the system can advance to field integration and undergo the Site
Acceptance Test (SAT).

This document describes all aspects of the SAT, from defining the versions of the used
components and deliverable checklist up to, test setup, tooling, test description, etc. to be
able to test the readiness of the system under test.

Finally, the structure of this document is divided into the following sections:

 Section A: Introduction
 Section B: Test strategy and approach
 Section I: SAT INTER-LogP
 Section II: SAT INTER-Health
 Section III: Opencall SATs
 Section IV: Open Call Third Parties Evaluation
 Section V: Conclusions

D6.3: Site Acceptance Test Plan

4

List of Authors

Organisation Authors Main organisations’ contributions

Neways Dennis Engbers Document template, structure, Executive
summary, Introduction, test setup, chapter
templates and edit of the final document

Neways Johan Schabbink SAT documents review

Neways Arnoud Groote-Venema SAT documents review

VPF Pablo Giménez SAT for INTER-LogP

UPV-SABIEN Álvaro Fides Valero SAT for INTER-Health

CEA Jander Nascimento SAT for SensiNact

VUB Kris Steenhaut, SAT for INTER-OM2M

VUB Benjamin Sartori SAT for INTER-OM2M

UPF Toni Adame
INTER-Hare System description, Deliverables,
version overview, Requirements, scenario, Use
cases to test, Test environment, Test description

UPF Albert Bel INTER-Hare Ethics

VPF Pablo Giménez INTER-Hare General revision

Nemergent
Solutions

Iñigo Ruiz

Created SAT for Mission Critical operations
based on IoT analytics

Nemergent
Solutions

Jose Oscar Fajardo
Created SAT for Mission Critical operations
based on IoT analytics

University of
Twente

João Moreira SAT for Early Warning System

Irideon Bastian Faulhaber SAT for Senshook

INFOLYSiS Vaios Koumaras SAT for SOFOS

INFOLYSiS Christos Sakkas SAT for SOFOS

AUEB Nikos Fotiou SAT for INTER-ACHILLES

AUEB George C. Polyzos SAT for INTER-ACHILLES

TU Wien Hong-Linh Truong
INTER-Hinc - All parts of the report, document
structure and tests

TU Wien Bunjamin Memishi INTER-Hinc - Drafted initial document structure

TU Wien Lingfan Gao INTER-Hinc - Support developing tests/services

TU Wien Michael Hammerer INTER-Hinc - Support developing tests/services

CNR-ITIA Gianfranco Modoni SAT for Semantic middleware

CNR-ITIA Enrico Caldarola SAT for Semantic middleware

AvailabilityPlus
/ SecurIoTy

Guenther Hoffmann SAT for SecurIoTy

E3tcity Javier Escalera Casillas SAT for E3tcity

D6.3: Site Acceptance Test Plan

5

Change control datasheet

Version Changes Chapters Pages

0.1 Creation, structure, Executive summary,
Introduction, test setup, chapter templates

All 31

0.2 Added initial SAT contributions List of Authors,

Acronyms,

Chapter 3

266

0.3 Added last two SAT contributions 3.3.2 and 3.3.5 301

0.4 Added evaluation and conclusions chapters
and moved the document to review state

4 and 5 303

0.5 Added test remarks to INTER-Health 3.2.2 and 3.2.3 305

0.6 Added additional tests to INTER-Logp 3.1.12 and 3.1.13 306

0.7 Rework based on review by Noatum 3.1 and 5 306

1.0 Released document All 306

1.1 Minor consistency and format changes after
final review

All 305

D6.3: Site Acceptance Test Plan

6

Contents

Executive Summary .. 3

List of Authors ... 4

Change control datasheet ... 5

Contents .. 6

List of Figures .. 8

List of Tables ..11

Acronyms ...14

1 Introduction ...16

2 Test strategy and approach ...17

 Testing strategy ..17

 Entrance criteria ...17

 Integration of the tested and validated system components17

 Validation and Test reports of the system components17

 Executed FAT test report(s) ..18

 SAT document ..18

 System test setup, Test applications and tooling ...18

 Acceptance Criteria ..18

 Testing types ..18

 Suspension and resumption criteria ...19

 Change Control Board ..19

 Defect Reporting ..19

3 Factory Acceptance Test ...20

 INTER-LogP SAT ...20

 Port authority ...20

 Port data ontology ...21

 Port data services ...23

 Port equipment deployed ..24

 Container terminal ...25

 Haulier Company ..28

 Integration of INTER-IoT components ...28

 Deliverables and version overview ..29

 Requirements, scenarios and use cases ...29

 Test environment ..30

 Test tools, hooks and probes ..30

 Test description ...33

 Test outcome overview ...40

D6.3: Site Acceptance Test Plan

7

 Integration ethics and security ...41

 INTER-Health SAT ...42

 Integration of IoT framework ..44

 Test coverage ...45

 SAT execution remarks ...45

 Deliverables and version overview ..47

 Requirements, scenarios and use cases ...48

 Test environment ..49

 Test tools, hooks and probes ..49

 Test description ...51

 Test outcome overview ...55

 Integration ethics and security ...55

 Open Call SAT’s ...56

 Third Party: SensiNact ..56

 Third Party: OM2M ..89

 Third Party: INTER-HARE ...99

 Third Party: Mission Critical operations based on IoT analytics 132

 Third Party: Early Warning System (EWS) .. 151

 Third Party: Senshook ... 178

 Third Party: SOFOS .. 193

 Third Party: ACHILLES ... 208

 Third Party: Inter-HINC .. 223

 Third Party: Semantic Middleware ... 243

 Third Party: SecurIoTy .. 268

 Third Party: E3City .. 290

4 Open Call Third Parties Evaluation .. 300

5 Conclusions ... 301

Annex a .. 302

D6.3: Site Acceptance Test Plan

8

List of Figures

Figure 1: INTER-LogP high-level design. ...20
Figure 2: Port IoT platform and integration ...21
Figure 3: Port API manager interface ...23
Figure 4: Environmental API definition ..24
Figure 5: Lighting pilot monitored areas. a) rail yard b) railway switchgear area24
Figure 6: Lighting pilot connectivity layout ..25
Figure 7: Lighting pilot installation map ...25
Figure 8: Terminal IoT platform and integration ..26
Figure 9: Haulier IoT platform and integration ...28
Figure 10: Events flow on detection of a new event until publication in the MQTT broker.32
Figure 11: IoT access control, traffic and operational assistance pilot process34
Figure 12: Wind gusts detection pilot process ..36
Figure 13: Dynamic lighting pilot 1 process ..38
Figure 14. Dynamic lighting pilot 2 process ..39
Figure 15: INTER-Health Hardware test overview ..42
Figure 16: INTER-Health Software overview ..43
Figure 17: SensiNact Gateway overall architecture ..56
Figure 18: SensiNact Southbound and Northbound bridges ...58
Figure 19: SensiNact Gateway internal architecture ...58
Figure 20: SensiNact Service and Resource model ..59
Figure 21: SensiNact’s service oriented approach ..60
Figure 22: SecuredAccess Sequence Diagram ..66
Figure 23: Access right inheritance diagram example ..66
Figure 24: Architecture of a sNa component. ..67
Figure 25: Lifecycle of an application. ...70
Figure 26: SensiNact Studio Graphical User Interface. ...70
Figure 27: Gateway configuration. ..71
Figure 28: Gateway connection. ...71
Figure 29: Application creation. ..72
Figure 30: Application deployment..73
Figure 31: Application management resources. ..74
Figure 32: Application start-up. ...75
Figure 33 StudioWeb initial screen ...76
Figure 34: StudioWeb connect ...77
Figure 35: StudioWeb gateway content ..77
Figure 36 StudioWeb: Sensor data ...78
Figure 37: StudioWeb gateway disconnection ..78
Figure 38: INTER-IoT: Middleware to Midldeware communication architecture79
Figure 39: SensiNactAPI factory for multiple SensiNact versions ...80
Figure 40: SensiNact INTER-IoT bridge design ..81
Figure 41: INTER-IoT: Sequence diagram for generic INTER-IoT MW2M bridge activation .81
Figure 42: Securing private data ...86
Figure 43: Example of security inheritance of service provider ...88
Figure 44: system overview ..90
Figure 45: Container resource (right) including an ACP resource (left)95
Figure 46: INTER-HARE transport network ..99
Figure 47: Example of INTER-HARE transport network.. 100
Figure 48: Ring structure of the LPWAN ... 100

D6.3: Site Acceptance Test Plan

9

Figure 49: Proposed architecture for the SAT tests .. 101
Figure 50: Structure of the integration INTER-HARE platform in INTER-IoT project 103
Figure 51: Generic gateway architecture of the INTER-IoT project 103
Figure 52: Detail of the elements composing the physical gateway 104
Figure 53: Internal structure of the INTER-HARE device controller 104
Figure 54: Physical gateway components... 105
Figure 55: Virtual gateway components .. 106
Figure 56: Diagram of the on-premises integration network (used for testing purposes) 107
Figure 57: Diagram of the final integration network ... 107
Figure 58: Friopuerto location at Valencia city .. 112
Figure 59: Friopuerto warehousing facilities at Valencia ... 113
Figure 60: Main features of Friopuerto’s coldstore .. 113
Figure 61: DHT22 Maximum temperature error depending on the measured value 114
Figure 62: Cluster-head developed for the INTER-HARE platform 115
Figure 63: TS_01 network topology .. 117
Figure 64: TS_02 network topology .. 118
Figure 65: TS_08 network topology .. 118
Figure 66: INTER-HARE monitoring tool based on Java .. 120
Figure 67: A Zolertia RE-Mote device with its led switched on in red 121
Figure 68: Scope of MiCrOBIoTa activities. .. 132
Figure 69: Overall system description. .. 132
Figure 70: IoT-aided Mission Critical operations scenario. .. 134
Figure 71: High-level perspective of the integration. ... 135
Figure 72: Use case perspective of the integration. .. 136
Figure 73: Typical EWS architecture (top) and the SEMIoTICS architecture (bottom). 153
Figure 74: INTER-IoT-EWS to detect accident risks and accidents at the port of Valencia. 155
Figure 75: Deployment components or INTER-IoT-EWS data flow 160
Figure 76: Network Architecture ... 178
Figure 77: System architecture ... 179
Figure 78: Integration test ... 182
Figure 79: Test setup ... 185
Figure 80: The proposed SDN/NFV end-to-end IoT Gateway overview 193
Figure 81: SOFOS Integration and Factory test setup overview. .. 194
Figure 82: SOFOS Integration and Factory test setup logical topology. 195
Figure 83: Collaboration approach SDN/NFV infrastructure in INTER-IoT architecture....... 195
Figure 84: Detailed approach of SDN applicability on top of INTER-IoT 196
Figure 85: Test setup of SOFOS solution. .. 199
Figure 86: The concept of the ACHILLES project ... 208
Figure 87: Testing system. ... 209
Figure 88: The setup phase. ... 210
Figure 89: Non-authorized request ... 211
Figure 90: Client authentication and authorization, and final phases. 212
Figure 91: ACHILLES-INTER-IoT integration ... 213
Figure 92: ACHILLES API as a component of the virtual GW ... 214
Figure 93: ACHILLES Client ... 214
Figure 94: Component View of INTER-HINC .. 223
Figure 95: Snapshot of Postman tool for testing INTER-HINC .. 232
Figure 96: Example of setting up Postman for testing ... 232
Figure 97: Overall architecture and its interaction with INTER.IoT 243
Figure 98. Subscription and notification workflow ... 244
Figure 99. Workflow of the cancellation of the subscription .. 245

D6.3: Site Acceptance Test Plan

10

Figure 100. Semantic Middleware Bridge ... 247
Figure 101. Overlapping between application ontology and GIoTP 248
Figure 102. Integration of the Semantic Middleware with the IoT framework 249
Figure 103. Workflow of the scenario ... 251
Figure 104: SecurIoTy overview of the solution architecture ... 271
Figure 105: SecurIoTy architecture with the DocRAID crypto proxy 272
Figure 106: SecurIoTy architecture with INTER-IoT middleware integration 272
Figure 107: Test architecture .. 276
Figure 108: SecurIoTy server ... 279
Figure 109: SecurIoTy access management .. 279
Figure 110: System e3tcity description ... 290
Figure 111: Diagram of solution e3t. ... 293

D6.3: Site Acceptance Test Plan

11

List of Tables

Table 1. Deliverable checklist ...29
Table 2. Component version overview ..29
Table 3. Requirements vs. test mapping ..30
Table 5. Scenario vs test mapping ...30
Table 6. Test outcome overview ...40
Table 1: Local Server software components ...44
Table 2: Android Phones applications ..44
Table 3: Healthcare Professional browsers ..44
Table 4: Deliverable checklist ...47
Table 5: Component version overview ..47
Table 6: Requirements vs. test mapping ..48
Table 7: Scenario vs test mapping ...49
Table 8: Test outcome overview ...55
Table 9 Resource types ..60
Table 10 Resource's access methods ..60
Table 11: Types used in the JSON component ..69
Table 12: Functions supported by the plugins of the AppManager69
Table 13: SensiNact Domain specific language basic syntax ...73
Table 14: Application management resources ..74
Table 15: Deliverable checklist ...82
Table 16: Component version overview ..82
Table 17: Requirements vs. test mapping ..82
Table 18: Test outcome overview ...85
Table 19: Transmission scheduling mode in the communication in physical gateway 108
Table 20: Transmission scheduling modes between physical and virtual gateway 108
Table 21: IoT components used in the SAT tests ... 108
Table 22: Deliverable checklist ... 109
Table 23: Component version overview .. 109
Table 24: Requirements vs. test mapping .. 111
Table 25: Scenario vs test mapping.. 111
Table 26: Recommended operating conditions of Zolertia RE-Mote (Zolertia, 2016) 113
Table 27: DHT22 temperature performance ... 114
Table 28: List of INTER-HARE testbed components .. 114
Table 29: Estimated pilot equipment... 116
Table 30: Test setups summary ... 117
Table 31: Test tools summary .. 119
Table 32: Test hooks summary .. 121
Table 33: Definition of error configurations ... 122
Table 34: Test probes summary ... 123
Table 35: Summary of SAT tests and definition .. 124
Table 36: Diagram compiling the different test setups .. 125
Table 37: List of requirements to be analyzed in each test ... 126
Table 38: Test outcome overview ... 130
Table 39: Component version overview .. 137
Table 40. Data sources. ... 156
Table 41: Deliverable checklist ... 158
Table 42: Component version overview .. 159
Table 43: Requirements vs. test mapping .. 165

D6.3: Site Acceptance Test Plan

12

Table 44: Scenario vs test mapping.. 165
Table 45: Test outcome overview ... 175
Table 46: Deliverable checklist ... 183
Table 47: Component version overview .. 183
Table 48: Requirements vs test mapping ... 184
Table 49: Scenario vs test mapping.. 184
Table 50: Test outcome overview ... 192
Table 51: Deliverable checklist ... 196
Table 52: Component version overview .. 196
Table 53: Requirements vs. test mapping .. 197
Table 54: Scenario vs test mapping.. 198
Table 55: Test outcome overview ... 206
Table 56: Deliverable checklist ... 215
Table 57: Component version overview. ... 215
Table 58: Requirements vs test mapping. .. 216
Table 59: Scenario vs. test mapping. .. 216
Table 60: Test outcome overview ... 222
Table 61:Tool checklist ... 227
Table 62: Component version overview .. 227
Table 63: Requirements vs. test mapping .. 229
Table 64: Scenario vs test mapping.. 229
Table 65: A basic configuration of the tests .. 230
Table 66: Services and source code. Test scripts are within the Git repositories. 231
Table 67: Test outcome overview ... 242
Table 68:Components and interface overview .. 248
Table 69: Deliverable checklist ... 249
Table 70: Component version overview .. 250
Table 71: Requirements vs test mapping ... 250
Table 72: Scenario vs test mapping.. 251
Table 73. Test outcome overview ... 266
Table 74: test categories .. 269
Table 75: tested components ... 269
Table 76: security measures... 270
Table 77: Deliverable checklist ... 273
Table 78: Component version overview .. 273
Table 79: Requirements vs. test mapping .. 274
Table 80: Scenario vs test mapping.. 275
Table 81: Requirements vs test mapping ... 277
Table 82: Alpha version quality criteria ... 277
Table 83: Beta version quality criteria ... 277
Table 84: Release version quality criteria ... 278
Table 85: Criticality description ... 278
Table 86: Priority description .. 279
Table 87: Test outcome overview: Architecture .. 287
Table 88: Test outcome overview: API ... 287
Table 89: Test outcome overview: Interoperability .. 287
Table 90: Test outcome overview: privacy/ security .. 288
Table 91: Test outcome overview: compliance ... 289
Table 92: Deliverable checklist ... 292
Table 93: Component version overview .. 292
Table 94: Requirements vs. test mapping .. 293

D6.3: Site Acceptance Test Plan

13

Table 95: Scenario vs test mapping.. 293
Table 96: Test outcome overview ... 298

D6.3: Site Acceptance Test Plan

14

Acronyms

AIOTI Alliance for Internet of Things Innovation

API Application Programming Interface

BDD Behaviour Driven Development

CCB Change Control Board

CNR-ITIA
National Research Council - Institute of Industrial
Technologies and Automation

CSV Comma-Separated Values

DMZ Demilitarized zone

EC European Commission

ESB Enterprise service bus

FAT Factory Acceptance Test

GCP Google Cloud Platform

GDPR General Data Protection Regulation

GOIoTP Generic Ontology for IoT Platforms

ICT Information and Communication Technology

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IoT-EPI IoT European Platform Initiative

IPR Intellectual property rights

JSON JavaScript Object Notation

JSONoWS JSON over WebSockets

LAB setup Test setup in a controlled environment at the developer site

LPLAN Low Power Local Area Network

LPWAN Low Power Wide Area Network

LTL Less than Truck Load

MC Mission Critical

MC-IoT Mission Critical Internet of Things

MCPTT Mission Critical Push To Talk

MEP MQTT Event publisher

MiCrOBIoTa Mission Critical operations based on IoT analytics

MQTT MQ Telemetry Transport

MS Microsoft

MSK Master Secret Key

D6.3: Site Acceptance Test Plan

15

MSSB MS Service Broker

MW2MW Middleware to Middleware

NFV Network Function Virtualization

oBIX Open Building Information eXchange

OM2M open source implementation of oneM2M in Eclipse

OS Operating System

OSGi Open Services Gateway initiative

PDR Packet Delivery Ratio

PIR Passive Infrared Sensor

PMR Professional Mobile Radio

PRM Power Regulation Mechanism

REST Representational State Transfer

SAT Site Acceptance Test

SDN Software Defined Networking

SSBEAS MS SQL Service Broker External Activator Service

STA Station

TDD Test Driven Development

TDMA Time Division Multiple Access

TED Transducer Electronic Data Sheet

TRL Technology Readiness Level

UPF Universitat Pompeu Fabra

URI Uniform Resource Identifier

URL Uniform Resource Locator

VPF Valenciaport Foundation

XML eXtended Markup Language

D6.3: Site Acceptance Test Plan

16

1 Introduction
INTER-IoT project is aiming at the design, implementation and experimentation of an open
cross-layer framework, an associated methodology and tools to enable voluntary
interoperability among heterogeneous Internet of Things (IoT) platforms. The proposal will
allow effective and efficient development of adaptive, smart IoT applications and services,
atop different heterogeneous IoT platforms, spanning single and/or multiple application
domains.
Most current existing sensor networks and IoT device deployments work as independent
entities of homogenous elements that serve a specific purpose, and are isolated from “the
rest of the world”. In a few cases where heterogeneous elements are integrated, this is done
either at device or network level, and focused mostly on unidirectional gathering of
information. A multi-layered approach to integrating heterogeneous IoT devices, networks,
platforms, services and applications will allow heterogeneous elements to cooperate
seamlessly to share data, infrastructures and services as in a homogenous scenario.

This document describes the Site Acceptance Test plan for INTER-IoT which is part of the
experimentation step.

One of the main goals of INTER-IoT is to overcome fragmentation caused by typical IoT
platforms being oriented to a specific solution, stakeholder and application domain. The
cross-domain use case will show how verticality is avoided in INTER-IoT. The rationale
behind this use case is that future IoT applications will not aim at a single application domain
but multiple domains in which devices, networks, platforms, services or generated data will
interact.
The scenarios defined in the cross application domain use case will integrate platforms from
the two application domains in consideration, and also from different application domains
(e.g. smart grid or smart cities). This use case will prove the extendibility of the project
outcomes, achieving interoperability between IoT platforms from different application
domains. Several scenarios have been foreseen in which IoT platforms from different
application domains may be required to interoperate, e.g. logistics and health monitoring of
transport workers for labour risk prevention, however new cross domain scenarios will be
defined during the execution of the project and after the resolution of the Open Call, including
e.g. road IoT ecosystems; supply chains or emergency response services IoT ecosystems
used in fire brigades, ambulances or security forces.

According to the Grant Agreement the field trials will be successful once the following
conditions are met:
“Trials of INTER-IoT concept, with involvement of 400 smart objects in the logistics use case
and 200 subjects (with wearable devices) in the m-Health use case, and ~500 IoT units in the
cross domain use case. Extensive testing of results of application of the INTER-IoT
framework to instantiate multi-IoT-platform systems in real-world scenarios, validated by the
corresponding stakeholders.”

D6.3: Site Acceptance Test Plan

17

2 Test strategy and approach
This Site Acceptance Test is performed to test and prove the system is operational and
functional and complies with the defined requirements. The SAT takes place after integration
at the customer site. During Site Acceptance Testing the solution is tested on: Integration,
Performance, conformance to specifications and User acceptance testing. The SAT
Document describes the Site Acceptance Testing plan and describes or points to previously
defined test plans, use cases and test scenarios used during testing. The test outcomes can
either be placed in the SAT document itself or a separate test report can be created

 Testing strategy

This document will describe the system, test setup, tooling, test strategy, test activities and
test results for the integrated setup. During these tests the system integration and
functionality will be tested and proven. For this test, the following stakeholders shall be
present:

 Project managers (From manufacturer and customer)
 Key engineering personnel (System Architect, Lead Engineer, Integrator)
 Operators
 Maintenance personnel

During the SAT test the actual deployed system is tested and proven. The SAT follows the
same principles as the FAT but describes and tests the system integrated in the customer
systems. During testing the result should be written in the SAT document which should be
signed off by all the attendees at the end of the test. Signing the SAT is the actual
acceptance of the system by the customer.

 Entrance criteria

To start a SAT for this project the following deliverables should be present/ready:

 Integration of the tested and validated system component into a complete system
 Validation and Test reports of the system components
 Executed FAT test report(s)
 A reviewed and approved SAT document
 System test setup (as much actual hardware as possible)
 Test applications and tooling (e.g. for performance testing)

 Integration of the tested and validated system components

The system components that make up this system should all be tested and validated. The
units that make up the components should be unit tested and validated on interface level,
normal use and boundary checking, error handling, performance, etc. After integration into
components the components should be integration tested the same way on interface level.

This applies for the pilot specific components as well as for the used IoT components. For
each component a test/validation report for the used version should be available stating that
the component has been tested and validated and passed this test.

 Validation and Test reports of the system components

The test and validation reports of the system components used in this project should provide
an overview of the tests done on the used system components and the outcome of these

D6.3: Site Acceptance Test Plan

18

tests. Each component should have passed the tests and validation before used in this SAT.
The version in these reports shall match the version used in the system release to be SAT
tested. An overview of the used version can be found in Table 78: Component version
overview.

 Executed FAT test report(s)

The FAT report or reports of the executed FAT tests which prove that the system has been
tested and validated before integration on site.

 SAT document

A printed version of this document which should be checked before start of the test. Any
issue found should be manually corrected. The outcome and remarks of each test as well as
the final outcome should be written in the copy of this document during testing and be signed
at the end of the SAT. The signed copy of this document will serve as an acceptance on the
system to start field integration.

 System test setup, Test applications and tooling

The test setup as described in this document should be present and checked for
completeness. See 0 Test environment for the system setup.

 Acceptance Criteria

The SAT acceptance criteria is a signed copy of this SAT document as this contains all the
needed deliverables and tests to complete the Site acceptance testing. After a successful
SAT the system can be integrated in the field and proceed to SAT testing.

 Testing types

The SAT document will define the testing types per project in detail. The following list
provides an example of testing types one could think of:

 manual data load
 interface using scripted data
 interface bounds checks
 converted data load
 converted data inspection
 backup and recovery
 database auditing
 data archival
 security
 locking
 batch response time
 online response time
 network stress
 stress testing
 security
 live data
 live environment
 error handling

D6.3: Site Acceptance Test Plan

19

 Suspension and resumption criteria

When one of the entrance criteria is not met at the start of the test the complete or part of the
tests will be suspended until it/they are met.

When during testing one of the entrance criteria’s is found to be unsatisfactory parts of the
tests or the complete test can be suspended until it is met. In most cases though the test will
be executed completely to prove the rest of the system.

When a test is suspended or after execution is not accepted the found issues shall be solved
and a new SAT test shall be performed. The new SAT will then again run all tests to confirm
the issues are solved and no new issues have been introduced.

 Change Control Board

A Change Control Board (CCB) will be defined for each project.

The change control board will consist of the following persons:

 Carlos Palau (UPV)
 Eneko Olivares (UPV)
 Flavio Fuart (XLAB)
 Johan Schabbink (NEWAYS)
 Dennis Engbers (NEWAYS)
 Pablo Giménez (VPF)
 Gema Ibáñez (SABIEN)

 Defect Reporting

Please see D6.1 System Integration Plan for defect reporting.

D6.3: Site Acceptance Test Plan

20

3 Factory Acceptance Test

 INTER-LogP SAT

The goal of INTER-LogP pilot is to demonstrate the need for a system that allows the
exchange of data and messages among the different actors of the port community. In this
case, as can be seen in Figure 1, there are three main actors: the port, the terminal and the
haulier company. INTER-IoT has to provide interoperability between the IoT platforms of the
port and the terminal, and give access to devices from other companies, like trucks.

Figure 1: INTER-LogP high-level design.

Both the port and the terminal have a large number of sensors and devices that produce
large amounts of data that can be interesting for other entities. Similarly, they need data from
other companies to provide a better service to their clients.

 Port authority

The port authority has several sensors distributed throughout the port that provide data for
management and operation. Most of this data is confidential, but some can be shared,
adding value to other companies.

The architecture for providing interoperability with the existing port infrastructure can be seen
in Figure 2. Currently, the port authority has an industrial control bus infrastructure using
SCADA and a common database to store data coming from different sources in an isolated
way (in red). The new platform uses WSO2 to provide an IoT architecture in two ways:
provide data in near real time through the Message broker and historic data through the Data
services server and an Enterprise service bus (ESB).

Because the port has its own platform, the integration with the INTER-IoT is done through
the INTER-MW. It needs a bridge in the middleware layer in order to interoperate with other
platforms.

Additionally, new devices are also introduced (i.e. PIR sensors, dynamic lighting controllers)
and interoperate through the gateway created in INTER-IoT.

D6.3: Site Acceptance Test Plan

21

Figure 2: Port IoT platform and integration

 Port data ontology

There are three different types of data from the port authority domain included in the INTER-
IoT pilots: gate access, environmental, and lighting. For each one of them, we have defined a
set of messages and included in the port ontology. These messages can be found below.

Gate access

{"valenciaPortData":{
 "entryVehicles": [
 {
 "accessId": 7089855,
 "date": "2018-01-
07T07:01:04.000Z",
 "lane": 7,
 "plate": "6345 GXZ",
 "reliability": 95,
 "containerNum1":
"MSKU9371630",
 "containerReliability1": 100,
 "containerNum2": "",
 "containerReliability2": 0
 }
]}}

{"valenciaPortData":{
 "exitVehicles":[
 {
 "accessId": 2156762,
 "lane": 1,
 "lprOk": 1,
 "lprDate": "2017-11-01T02:00:17. +02:00",
 "lprPlate": "7252EKT",
 "lprReliability": 99,
 "lprAlarmOk": 1,
 "lprAlarmDate": "2017-11-01T02:00:17. +02:00",
 "lprAlarmPlate": "7252EKT",
 "lprAlarmReliability": 99,
 "quercusLprOk": 1,
 "quercusLprDate": "2017-11-01T02:00:17. +02:00",
 "quercusLprPlate": "7252EKT",
 "quercusLprReliability": 99,
 "quercusLprAlarmOk": 1,
 "quercusLprAlarmDate": "2017-11-01T02:00:17.
+02:00",
 "quercusLprAlarmPlate": "7252EKT",
 "quercusLprAlarmReliability": 99,
 "gateOpen": "2017-11-01T02:00:17. +02:00",
 "spire": "2017-11-01T02:00:17. +02:00",
 "ocrOk": 1,
 "ocrDate": "2017-11-01T02:00:17. +02:00",
 "ocrContainerNum1": "PCIU9985660",
 "ocrContainerReliability1": 99,
 "ocrContainerNum2": "PCIU9985660",

D6.3: Site Acceptance Test Plan

22

 "ocrContainerReliability2": 99,
 "ocrAlarmOk": 1,
 "ocrAlarmDate": "2017-11-01T02:00:17. +02:00",
 "ocrAlarmContainerNum1": "PCIU9985660",
 "ocrAlarmContainerReliability1": 99,
 "ocrAlarmContainerNum2": "PCIU9985660",
 "ocrAlarmContainerReliability2": 99
 }
]}}

Environmental

{"valenciaPortData":{
 "meteoStations": [
 {
 "meteoStationId": 2,
 "name": "P.Felipe",
 "portId": 1,
 "active": 1,
 "location": "Muelle Felipe
Valencia",
 "latitude": 26.94442,
 "longitude": 19.29351
 }
]}}

{"valenciaPortData":{
 "weatherMeasurements": [
 {
 "measurementId": 3181710,
 "meteoStationId": 9,
 "date": "2018-02-15T09:50:01.000Z",
 "windSpeed": 2.797972,
 "windDirection": 177.4603,
 "averageTemperature": 13.23898,
 "humidity": 78.36698,
 "precipitation": 4.899998,
 "seaTemperature": 0.0,
 "solarRadiation": 0.0,
 "pressure": 1025.552
 }
]}}

{"valenciaPortData":{
 "soundMeters":[
 {
 "cabinId": 1,
 "soundMeterId": "3D0CF7BE-457A",
 "description": "Control Túnel",
 "portId": 1,
 "latitude": 26.027065,
 "longitude": 18.170195
 }
]}}

{"valenciaPortData":{
 "soundMeasurements":[
 {
 "measurementId": 3178660,
 "cabinId": 1,
 "startDate": "2017-11-01T02:00:17.
+02:00",
 "endDate": "2017-11-01T02:00:17.
+02:00",
 "maxSoundLevel": 706,
 "averageSoundLevel": 552,
 "minSoundLevel": 505
 }
]}}

{"valenciaPortData":{
 "emissionCabins":[
 {
 "emissionCabinId": 1,
 "name": "Cabina VR-004",
 "portId": 1,
 "description": "Caseta Ecoport",
 "latitude": 26.027065,
 "longitude": 18.170195
 }
]}}

{"valenciaPortData":{
 "emissionMeasurements":[
 {
 "measurementId": 3178660,
 "emissionCabinId": 1,
 "date": "2017-11-01T02:00:17. +02:00",
 "co": 0.2,
 "no": 12,
 "no2": 10,
 "nox": 18,
 "so2": 10,
 "particlesConcentration": 7.9
 }
]}}

D6.3: Site Acceptance Test Plan

23

Lighting

{"valenciaPortData":{
 "lights":[
 {
 "lightId": "L01",
 "lampPostId": "B01",
 "description": "",
 "latitude": 26.94442,
 "longitude": 19.29351,
 "powerState": 1,
 "isConnected": 1,
 "consumption": 7.9,
 "dimmer": 7.9,
 "lastUpdate": "2018-03-14T11:00:17. +02:00"
 }

{"valenciaPortData":{
 "presenceSensors":[
 {
 "presenceSensorId": "P01",
 "type": "PIR",
 "description": "",
 "latitude": 26.94442,
 "longitude": 19.29351
 }
]}}

{"valenciaPortData":{
 "presenceSensorObservations":[
 {
 "observationId": 1,
 "presenceSensorId": "P01",
 "detectionDate": "2017-11-01T02:00:17. +02:00"
 }
]}}

 Port data services

The data coming from the port authority IoT platform is accessible in two different ways,
depending on the type of data.

To access real-time data, a platform or application can subscribe to different topics at a
broker (always through the MW), as long as they have access. An example of a topic for
accessing meteorological data is env/weather/stations/1.

In the case of historical data, there are different APIs providing access to the data stored in
the database. The port IoT platform has an API manager where all the published APIs can
be found, as seen in Figure 3. Figure 4 shows an example of one API definition.

Figure 3: Port API manager interface

D6.3: Site Acceptance Test Plan

24

Figure 4: Environmental API definition

 Port equipment deployed

The INTER-LogP pilots will reuse the existing systems and sensors in the port and the
Noatum terminal as much as possible. However, the pilots required the deployment of some
additional equipment.

In the case of the port, the main equipment added is a server hosting the port IoT. This
server has access to the different port legacy systems needed to collect the data.

However, in the case of the lighting pilot new equipment had to be deployed in order to
monitor the two areas involved in the pilot: the rail yard in Noatum and the railway switchgear
area, which are shown in the Figure 5

Figure 5: Lighting pilot monitored areas. a) rail yard b) railway switchgear area

The new equipment distributed between the port and the terminal is:

 28 light bulbs
 34 controllers for lights and PIRs
 8 PIRs
 4 routers
 3 WiFi access points
 3 INTER-IoT gateways

D6.3: Site Acceptance Test Plan

25

In the following figures it is shown how this equipment is connected and controlled through
the different IoT platforms. Namely, Figure 6 shows the layout connectivity, and Figure 7 the
installation map.

Figure 6: Lighting pilot connectivity layout

Figure 7: Lighting pilot installation map

 Container terminal

The correct management of resources in a container terminal implies the monitoring of all the
machinery. For that reason, in the Noatum terminal, each machine (vehicles, cranes, etc.)
provides a massive amount of data, about to 80 sensors per machine reporting on a
secondly basis. In total, there are around 300 monitored devices, including both machines
and the dynamic lighting on lamp posts.

D6.3: Site Acceptance Test Plan

26

As can be seen in Figure 8, there are four different types of data sources reporting data from
the machinery to the IoT Platform, legacy sensors/systems and IoT devices. Legacy sensors
are read once per second and inserted in the IoT Platform. New IoT devices are configured
to send their data directly through a MQTT bus or REST interfaces on real-time. In addition,
the data is stored in a non-relational database, what speeds up the access to information.

As in the port, the Noatum container terminal IoT platform is to be integrated with INTER-IoT
through the middleware layer and the API layer.

Figure 8: Terminal IoT platform and integration

The container terminal has its own server with its own IoT platform. The main interest of the
container terminal is to know the estimated time of arrival of the trucks to the terminal to
manage its resources adequately. Furthermore, the terminal grants access to other
companies to some of their own data, such as the entry and exit of trucks by their access.

Example of a data from a terminal tractor (TT) as it is present in the SEAMS IoT Platform
(which uses several components of WSO2):

{"id":169,"name":"TT0063","type":"TT_G5","family":"TT","msgTimestamp":"29/05/201
8
14:29:42","version":"1.0","attributes":{"GpsX":{"value":39.4341354370117},"GpsY"
:{"value":-
0.329963326454163},"GpsHDOP":{"value":1.06619203090668},"GpsSQ":{"value":0},"Gps
DU":{"value":2},"Gps":{"value":7},"GpsV":{"value":0},"Dist":{"value":0.0},"GpsR"
:{"value":296.85},"Nmov":{"value":true},"PlcOn":{"value":true},"DrOn":{"value":t
rue},"On":{"value":true},"Off":{"value":false},"Alarm":{"value":false},"WHours":
{"value":30451},"FRate":{"value":0.0},"PPos1":{"value":false},"PPos2":{"value":f
alse},"Reserva12":{"value":false},"Reserva11":{"value":false},"Reserva10":{"valu
e":false},"Reserva9":{"value":false},"Reserva8":{"value":false},"Reserva7":{"val
ue":false},"Reserva6":{"value":0},"Reserva5":{"value":0},"Reserva4":{"value":0},
"Reserva2":{"value":0.0},"Reserva1":{"value":0.0}},"metadata":[{"timestamp_BB":"
2018-05-29T14:29:43.161Z"},{"guid":"42491904-cfad-46ca-830c-
94060213c61a"},{"threadId":29}]}

D6.3: Site Acceptance Test Plan

27

Or, in the case of a Sea-to-Shore (STS) crane:

The data as it is delivered by the REST API is as follows

curl -X GET --header 'Accept: application/json' --header 'Content-Type: application/json'
'http://192.168.11.9:8081/seams2/SEAMS2-Platform/1.0.0/devices/context/STS015'

 {
 "name": "GantL",
 "value": "false",
 "metadata": null
 },
 {
 "name": "WindS",
 "value": "17.65625",
 "metadata": null
 },
 {
 "name": "PosArea",
 "value": "",
 "metadata": null
 },
 {
 "name": "PosZone",
 "value": "DOC",
 "metadata": null
 },

 […]

{"id":10,"name":"STS015","type":"STS_G7","family":"STS","msgTimestamp":"29/05/20
18
14:50:31","version":"1.0","attributes":{"GpsX":{"value":39.432975769043},"GpsY":
{"value":-
0.323958337306976},"GpsHDOP":{"value":1.066192},"GpsSQ":{"value":2},"GpsDU":{"va
lue":2},"Gps":{"value":8},"GpsV":{"value":0},"Dist":{"value":0.0},"GpsR":{"value
":292.46},"TwO":{"value":false},"TwC":{"value":true},"TrLane":{"value":true},"Nm
ov":{"value":false},"Sp20":{"value":false},"Sp40":{"value":true},"SpTwin20":{"va
lue":false},"SpTwin40":{"value":false},"SpTwin4x20":{"value":false},"FlippUp":{"
value":true},"FlippDown":{"value":false},"NetLoad":{"value":0.0},"ETrolley":{"va
lue":-
13525},"JoyTr":{"value":0},"TrSea":{"value":false},"TrLand":{"value":false},"TrP
ark":{"value":false},"EHoist":{"value":4635},"JoyHo":{"value":-
67},"HoistU":{"value":false},"HoistD":{"value":true},"BoDls":{"value":true},"BoU
lt":{"value":false},"BoDw":{"value":false},"BoUp":{"value":false},"Bo45":{"value
":false},"JoyGr":{"value":0},"GantR":{"value":false},"GantL":{"value":false},"Pl
cOn":{"value":true},"DrOn":{"value":true},"SprOn":{"value":true},"PrtOn":{"value
":false},"CabSen":{"value":false},"CtCab":{"value":true},"CtGrn":{"value":false}
,"CtBoo":{"value":false},"CtEro":{"value":false},"MMant":{"value":false},"HookMo
":{"value":false},"ManMo":{"value":false},"On":{"value":true},"EcoON":{"value":f
alse},"StbyON":{"value":false},"Off":{"value":false},"OnR":{"value":false},"EcoO
nR":{"value":false},"StbyOnR":{"value":false},"OffR":{"value":false},"Fault":{"v
alue":false},"Alarm":{"value":false},"Warning":{"value":false},"WHours":{"value"
:52527},"PwCons":{"value":-
62},"PwGen":{"value":0},"WindS":{"value":25.53125},"FRate":{"value":0.0},"HBrake
":{"value":false},"Oper":{"value":0},"Reserva12":{"value":false},"Reserva11":{"v
alue":false},"Reserva10":{"value":false},"Reserva9":{"value":false},"Reserva8":{
"value":false},"Reserva7":{"value":false},"Reserva6":{"value":0},"Reserva5":{"va
lue":0},"Reserva4":{"value":0},"Reserva2":{"value":0.0},"Reserva1":{"value":0.0}
},"metadata":[{"timestamp_BB":"2018-05-29T14:50:31.696Z"},{"guid":"6f63472a-
0c89-4ce5-8a77-6f5f4625b172"},{"threadId":13}]}

D6.3: Site Acceptance Test Plan

28

 Haulier Company

Haulier companies have large fleets of trucks accessing the port daily. The trucks involved in
the pilot will have a mobile app (MyDriving1) installed in a mobile or a tablet that acts as a
bridge between the vehicle and the IoT platform of the company in Azure. All the devices in
the truck and the driver send the data to the IoT platform through the mobile app via
Bluetooth.

The haulier company has an Azure IoT platform in the cloud where their trucks send all their
data. These data will be accessible to other companies as long as they are authorized and
certain conditions are met, such as being within the port area.

Figure 9: Haulier IoT platform and integration

 Integration of INTER-IoT components

In the port domain there are many different companies with different data platforms. Hence, a
tool that allows these companies to interoperate is needed. During the INTER-LogP pilot, two
of the INTER-IoT components will be used to allow such interoperability.

The most important INTER-IoT component used is the INTER-MW. INTER-MW allows the
interconnection of the three IoT platforms and the exchange of data and messages. Each of
these platforms has to install or develop a bridge, which is integrated in the Middleware.
Once the bridge is ready, the platform can share and receive data. It is also needed to
develop a translator in the bridge, in order to allow the semantic translation.

In one of the INTER-LogP pilots, the INTER-IoT Gateway is also used. In the dynamic
lighting pilot, several light posts have to send and receive data to/from the port authority IoT
platform. Instead of sending the data from each light post, there are two gateways that gather
all the data and they send it to the platform.

Similarly, the INTER-FW and the INTER-API are needed as well. INTER-FW allows to
manage the previous INTER-IoT components. On its side, INTER-API is included in the
framework to provide access to different applications.

1 https://azure.microsoft.com/en-gb/campaigns/mydriving/

D6.3: Site Acceptance Test Plan

29

 Deliverables and version overview

The following table contains a deliverable list that needs to be signed of before SAT testing
commences.

ID Description Check

Documents

1 INTER-IoT D6.1 System Integration Plan

2 INTER-IoT D6.2 Factory Acceptance Test Plan

3 INTER-IoT D6.3 Site Acceptance Test Plan

Software

4 WSO2 IoT platform

5 Seams IoT platform

6 Azure platform

7 Spotlights and controllers

Tools

8 Wireshark

9 SoapUI

10 MQTT.fx

11 Mosquito MQTT
Table 1. Deliverable checklist

The following table shows the software components and version of the system release.

ID Description Version Check

INTER-IoT Physical Gateway

1 Physical Gateway

INTER-IoT Virtual Gateway

4 Virtual Gateway

INTER-IoT Middleware

7 MW

8 IPSM
Table 2. Component version overview

 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

1 Roaming across platforms T1.1

20 Real time support All

26 Remote device control T1.3, T1.4

27 System security All

28 System privacy All

51 API for data publication All

74 Ontology support All

95 Robustness, resilience and availability All

166 Detection of passive physical entities to start communication
with other platforms

T1.1

194 Provide exchange of virtual objects between platforms All

195 Provide the creation and monitoring of geofences T1.1

D6.3: Site Acceptance Test Plan

30

234 Provide connectors to middleware standards All

237 API Middleware for interoperability between different platforms All

246 Identification of an object through multiple techniques T1.1
Table 3. Requirements vs. test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

6 Dynamic lighting in the port T1.3, T1.4

7 SCADA port sensor system integration with IoT platforms T1.1, T1.2

8 SEAMS integration with IoT platforms T1.1, T1.2

30 IoT access control, traffic and operational assistance T1.1
Table 4. Scenario vs test mapping

 Test environment

3.1.10.1 Introduction

In this chapter the INTER-LogP test environment is described. In addition, there is a list of
tools used to test the correct functioning of the different systems.

3.1.10.2 Test environment

This section describes the SAT test environment where INTER-LogP is deployed.

The TRL (Technology Readiness Level) objective of the INTER-IoT components is 6 or 7. So
the final demonstration test will be done in a real operational environment, but in a controlled
environment. It is important that a prototype never interfere with the daily operations of the
company where it is deployed.

For that, the port authority IoT platform is located in the DMZ of the Valencia Port Authority
network. It has access to real data, but with security measures that guarantee the correct
functioning of the port systems. The mechanisms deployed to access the data can be
removed quickly and easily in case of any incident. The system status is checked daily to
assess if there is any type of incident.

Most of the data used is restricted, so security is also relevant. The port IoT platform is only
accessible for IPs with permissions and for certain ports. The rest of the IPs are discarded. In
the case of the Noatum terminal, the data is more sensitive. In this case, the IoT platform is
only reachable through a VPN.

In the INTER-LogP pilot, other INTER-IoT components are used, such as the middleware
and the gateway. These two components are deployed in an Azure cloud, and they are
configured to access the different platforms.

 Test tools, hooks and probes

Many of the test tools, hooks and probes listed here were used as well in the Factory
Acceptance Test in the lab environment. They are already described in the Deliverable D6.2,
to which the reader is referred for more detailed information. For the Site Acceptance Tests
in the InterLogP pilot we plan to use the following tools, hooks and probes:

D6.3: Site Acceptance Test Plan

31

TS_01 Publication of data from a legacy data source

The first and second scenario require the information from the gate access control and
environmental stations. The industrial system of the port collects information and registers
them in a database. Our task is to use that database as an event generator, so the inserts
and updates on the tables of interest are notified to the platform, manipulated, and made
available to potential users following the format described in Section 3.1.2.

To do so, we devised the following tools:

 Event detector: we built an event detector to be used with MicroSoft (MS) SQL Server
databases, the ones in use in the Port of Valencia. The detector makes use of the MS
Service Broker (MSSB) tool, included in the MSSQL Server. The MSSB can
implement procedures that detect when new inserts or updates are performed on a
series of tables of interest. These events are captured by the broker and stored with a
determined format in an internal queue. Additionally, we use the MS SQL Service
Broker External Activator Service (SSBEAS) tool that, upon the occurrence of new
events, detected as new messages in the queue, will trigger the execution of an
external application, our event publisher.

 MQTT Event publisher (MEP): the event publisher is in charge of collecting the
events captured by the MSSB, converting them to the agreed format, and publishing
them to the target communication mean. The communication mean, in this case, is a
MQTT broker.

 Data injector: we use the data injector to replicate a real environment in our lab. It
loads past data from the database and injects it following the same time pattern. In
this way we can test our system with a load similar to the real one, or using speed up
factors, so the data is inserted faster. In this manner, we can test the response of our
tools under stress.

Having these tools in place, the flow in both real and test environment (using the data
injector) would be the following:

1. The MS SQL Server database receives a new insert or update statement, either from the
real industrial system or from the data injector.

2. The MSSB captures the event associated to the new statement. The associated
procedure stores data from this event into an internal queue.

3. Simultaneously, the MSSB triggers the SSBEAS.
4. The SSBEAS triggers the MEP.
5. The MEP connects to the SQL Server database and collects the data stored in the

internal queue.
6. The MEP formats internally these data into the format agreed, shown in its Section and

publishes the data to the MQTT broker hosted in our WSO2 system.

Figure 10 describes these steps mentioned above graphically.

D6.3: Site Acceptance Test Plan

32

WSO2

MQTT Event
Publisher

SSBEAS

MQTT broker

SQL Service Broker

SQL Server

TargetQueue
1

2

3

4

5

6

New
Insert/
update

statement

Figure 10: Events flow on detection of a new event until publication in the MQTT broker.

TP_01 MQTTFX

MQTTFX is a free MQTT client with a user friendly graphical interface in which users can
create MQTT connections with various configurations (e.g. security), subscribe to several
MQTT topics as well as to publish messages to an MQTT Broker. In the SAT tests we will
use the MQTTFX tool to capture all the events generated by the devices involved in this pilot
(gates’ sensorization system, meteorological stations, presence sensors, etc.). It will act as a
logging tool to check the correct functioning of the INTER-IoT platform as well as the port’s
platform. As an example, with the aim of checking the proper operation of port’s platform, we
will be able, for instance, to subscribe to events (via WSO2 MQTT Broker) like the ones
thrown by the port’s gates systems when trucks pass through. Likewise, we could validate
the communication between IoT platforms by subscribing to information generated by
Noatum’s gates systems.

TP_02 TCPdump

Although TCPdump was already used for the FAT tests it is still worth to use it in SAT as
well. TCPdump may be very helpful in diagnosing the status of communication channels
between involved IoT platforms, especially in case of problems. By filtering packets per port,
MAC address and IP address one can focus in monitoring just the communication flow
between a selected pair of entities (e.g. device to platform).

TH_01 SOAP UI

Although SOAP UI was already used in FAT tests, it remains very helpful for SAT tests as
well. Once the INTER-IoT platform will be deployed and connected with port’s platform
through the bridge it will be very important to double check, before the pilot’s execution, the
correct functioning of different parts of the whole pilot’s system. This will be accomplished by
injecting test messages into different points in the chain of entities involved in this pilot.

TT_01 Mosquito MQTT Broker

Mosquito MQTT Broker was also used in FAT tests. This test tool will be used as passive
monitoring system that will sniff all the MQTT messages that comes into the port’s platform
and messages going out towards the INTER-IoT system. It will allow us to check that data is
flowing between both applications.

D6.3: Site Acceptance Test Plan

33

 Test description

This chapter describes the different tests performed in the INTER-LogP pilot.

3.1.12.1 IoT access control, traffic and operational assistance

The main objective of the defined pilot is providing a service to control access, monitor traffic
and assist the operations in the port. Several systems will be able to identify trucks and
drivers using different devices. This information can be shared under certain predefined rules
due the interoperability between the platforms involved. This information can be used to
monitor the truck inside the port by the Port Authority platform (security and safety purposes)
and to manage the resources in the terminal more efficiently. This will also allow avoiding
queues in the access gates to the port and the terminal.

Interoperability in this scenario is required to connect the port authority, the container
terminals and the road hauliers IoT platforms. The resulting service will integrate the:

 Port Authority IoT platform
 Container terminal IoT platform
 Road haulier cloud IoT platform

Truck triggers information

The element starting the communication is the truck once it approaches to the port. At that
moment, it starts to send its location information in real time to the haulier company IoT
platform, which is the responsible for sharing it.

This use case involves these requirements: [27], [28], [166], [180], [188], [194], [195], [198],
[245], [246], [248], [268].

T1.1 IoT access control, traffic and operational assistance

ID T1.1

Test Verify the integration of all the components in the IoT access control, traffic and
operational assistance pilot. The main objective of the defined pilot is a service
to control access, monitor traffic and assist the operations at the port.

Type System testing

Setup Deployment, installation and configuration of all the components.

Start A truck arriving to the port.

Req. [27], [28], [166], [180], [188], [194], [195], [198], [245], [246], [248], [268]

Input Truck data

Output Exchange of access data between the port and the terminal

Outcome Pass / Fail

Test output: INTER-LogP1.1.log

The process that will be developed in the scenario is the following:

1. The truck continuously sends information to the haulier company. This information
includes the position.

2. Upon arrival, the truck is detected by the port gates system and the associated data is
sent to the port authority IoT platform.

D6.3: Site Acceptance Test Plan

34

3. The port IoT platform publishes the data to all the entities that are allowed to receive this
data.

4. From this moment, the haulier IoT company starts to share the position of the truck with
the port and the terminal.

5. When the truck is detected by the Noatum gates system, the data is sent to the terminal
IoT platform.

6. The terminal IoT platform publishes the data to all the entities that are allowed to receive
this data.

7. All the data is gathered, analysed and represented in a dashboard owned by the port
authority.

Figure 11: IoT access control, traffic and operational assistance pilot process

D6.3: Site Acceptance Test Plan

35

3.1.12.2 Pilot Wind gusts detection

The main objective of the defined pilot is to share data related to wind gusts in order to avoid
accidents when they become dangerous. The port authority and each of the terminals have
their own meteorological stations that detect different environmental data. However, in a
dangerous situation, the wind gust may be detected in the terminal itself but it might not be
detected early enough. If you could know that wind gusts may be arriving in advance by
having them detected by other near meteorological stations, the operation could then be
stopped safely.

Interoperability in this scenario is required to connect the port authority and the container
terminal IoT platforms.

The resulting service will integrate the:

 Port Authority IoT platform
 Container terminal IoT platform

Wind triggers information

The element that starts the communication is the wind gust, in the different meteorological
stations. The port and the terminal share the wind data to detect dangerous situations.

This use case involves these requirements: [27], [28], [180], [188], [194], [245], [268].

T1.2 Pilot Wind gusts detection

ID T1.2

Test Verify the integration of all the components in the wind gust detection pilot. The
main objective of the defined pilot is providing a service to share
meteorological data to improve the safety.

Type System testing

Setup Deployment, installation and configuration of all the components.

Start A wind gust is detected.

Req. [27], [28], [180], [188], [194], [245], [268].

Input Wind data

Output Exchange of wind data between the port and the terminal

Outcome Pass / Fail

Test output: INTER-LogP1.2.log

The process that will be developed in the scenario is the following:

1. The port weather stations detect wind data that is stored in the port IoT platform.
2. When the wind gust exceeds a threshold, the event is published through INTER-IoT.
3. In the same way, Noatum has its own weather station that are storing metrological data.
4. When a dangerous wind gust is detected, is also published.
5. All the data is gathered, analysed and represented in a dashboard.

D6.3: Site Acceptance Test Plan

36

Figure 12: Wind gusts detection pilot process

3.1.12.3 Pilot Dynamic lighting

The goal of this pilot is to expand the smart illumination (dynamic Illumination) in the yard of
Noatum for the rail yard and in the railway switchgear area (terminal access). In the first
case, the lighting posts belong to the port authority of Valencia but the machinery belongs to
Noatum. In the second case, the lighting posts belong to Noatum and the port authority
manages the switchgear area. In both cases, an exchange of data between both companies
is needed in order to illuminate the area properly during the operation.

Interoperability in this scenario is required in order to connect the port authority and the
container terminals.

The resulting service will integrate the:

 Port Authority IoT platform
 Container terminal IoT platform

D6.3: Site Acceptance Test Plan

37

Lighting triggers information

The intensity of the lighting is reduced when there is no activity in the terminal. When a truck
or a train access the railway area the intensity of lighting should be increased. Therefore, the
truck or train are the elements that trigger an event by sending their position.

This use case involves these requirements: [27], [28], [168], [180], [198], [245].

T1.3 Pilot Dynamic lighting. Train arriving to Noatum’s rail yard

ID T1.3

Test Verify the integration of all the components in the dynamic lighting pilot. The
goal of this pilot is to develop a smart illumination (dynamic Illumination)
system for the rail yard in the yard of Noatum.

Type System testing.

Setup Deployment, installation and configuration of all the components.

Start A train or machinery accesses the rail yard area in the terminal.

Req. [27], [28], [168], [180], [198], [245].

Input Data from PIR sensors.

Output The light intensity in the rail yard terminal is adjusted for the operation.

Outcome Pass / Fail

Test output: INTER-LogP1.3.log

The process that will be developed in the scenario is the following:

1. Activity is detected in the train yard (train, truck, or person) by PIRs located on the left
corner (truck access) or on top of the building.

2. Upon detection, the associated data is sent to the terminal IoT platform to be processed.
The light posts that depend on the terminal raise their light intensity.

3. At the same time, the data is published through INTER-IoT and, hence, shared with the
port.

4. The two platforms managing some of the port streetlights receive the data and raise the
light intensity.

D6.3: Site Acceptance Test Plan

38

Figure 13: Dynamic lighting pilot 1 process

T1.4 Pilot Dynamic lighting. Train in the arriving to railway switchgear area

ID T1.4

Test Verify the integration of all the components in the dynamic lighting pilot. The
goal of this pilot is to develop a smart illumination (dynamic Illumination)
system for the railway switchgear area.

Type System testing.

Setup Deployment, installation and configuration of all the components.

Start A train or machinery accesses the rail yard area in the terminal.

Req. [27], [28], [168], [180], [198], [245].

Input Data from PIR sensors.

Output The light intensity in the railway switchgear area is adjusted for the operation.

Outcome Pass / Fail

Test output: INTER-LogP1.4.log

The process that will be developed in the scenario is the following:

1. Activity is detected in the railway switchgear (train or person) by PIRs located at the
beginning or at the end of the area.

2. Upon detection, the data is sent to the port IoT platform to be processed.
3. At the same time the data is published though INTER-IoT and, hence, shared with the

terminal.
4. The terminal IoT platform receives the data and raises the light intensity in the area.

D6.3: Site Acceptance Test Plan

39

Figure 14. Dynamic lighting pilot 2 process

Reliability of components

In all the INTER-LogP pilots, the INTER-IoT products are the key components. The objective
of these scenarios is to demonstrate the usefulness of the components and test all their
features. In this case, the two INTER-IoT components used are the Middleware and the
Gateway. For both components, we need to perform deep performance tests.

T2.1 MW Reliability

ID T2.1

Test Integrate and test the middleware in the port environment. For that, we will
carry out communication tests, sending messages, forced shutdown, stress
tests, long-term stability, bridges deployment tests, etc.

Type Integration and testing.

Setup Deployment, installation and configuration of the middleware.

Start Bridges for each type of platform are installed and platforms start to exchange
data with the middleware.

Req. [2], [28], [43], [95], [234], [235], [236], [237], [238].

Input Messages coming from the platforms through the MW.
Clients requesting data.

Output Messages arrive to their destination.

Outcome Pass / Fail

Test output: INTER-LogP2.1.log

D6.3: Site Acceptance Test Plan

40

T2.2 Gateway Reliability

ID T2.2

Test Integrate and test the gateway in the port environment. For that, we will carry
out communication tests, sending messages, forced shutdown, stress tests,
long-term stability, etc.

Type Integration and testing.

Setup Deployment, installation and configuration of the gateway.

Start A gateway is installed in the port and sensors start to send observations
through the gateway.

Req. [2], [28], [39], [95], [243], [244], [245], [237], [238].

Input Observations coming from the sensors to the gateway.
Actuations coming from the platform to the gateway.

Output Messages arrive to their destination.

Outcome Pass / Fail

Test output: INTER-LogP2.2.log

 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T1.1 IoT access control, traffic and operational assistance Pass / Fail

T1.2 Pilot Wind gusts detection Pass / Fail

T1.3 Pilot Dynamic lighting. Train arriving to Noatum’s rail yard Pass / Fail

T1.4 Pilot Dynamic lighting. Train in the arriving to railway switchgear
area

Pass / Fail

T2.1 MW Reliability Pass / Fail

T2.2 Gateway Reliability Pass / Fail

SAT Outcome Pass / Fail
Table 5. Test outcome overview

D6.3: Site Acceptance Test Plan

41

 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

INTER-LogP

Privacy and confidential

The objective of this project is interoperability, so the exchange of data between components
and platforms is mandatory. However, in the port sector this data could be sensitive to the
owner’s company, so agreements are necessary among the organizations to use the data
only for the agreed purpose. Moreover, the information should not be shared with anyone
else.

The data used in the INTER-LogP pilot is not critical or sensitive, oppositely to the health
pilot, but it is confidential. The access has to be secure as this data could be used by
competitors for market positioning.

Furthermore, all the INTER-IoT developments and platforms must adapt to the General Data
Protection Regulation (GDPR) legislation that becomes enforceable on May 2018. For this
reason, the data owner will always be able to give consent, see who is accessing their data
and revoke the access permissions if necessary.

One of the lessons learnt regarding data sharing in a port environment is that several
companies are reluctant to share their data. If these companies are not in the consortium
agreement and they do not see a clear benefit to them, they do not want to participate.

Security

In addition to privacy and confidentiality, all these processes require a high level of security.
The security must be guaranteed in communications and in each of the intermediate
components. This must be done through the use of secure and encrypted communication
channels and with high security in the middleware.

In the port IoT platform there is an Identity Access management module that manages the
security. A token is necessary to access the data through any of the APIs or the real-time
data in the broker. The protocol used for this purpose is OAuth version 2.0. In fact, the client
has to go through two steps before getting a valid token: first, it must get the client id and the
secret key, and second, the client uses the client id and secret key to request a token using
the OAuth2 Client Credentials Grant type.

Apart from OAuth2 access protocol, each client is required to establish a connection using
SSL/TSL encryption protocol. Clients need a CA signed certificate in order to connect with
the port IoT platform and thus exchange information encrypted by both sides.

D6.3: Site Acceptance Test Plan

42

 INTER-Health SAT

The following scheme shows the deployment of hardware equipment:

Figure 15: INTER-Health Hardware test overview

The network in ASLTO5 is pre-existent and should not be modified just to integrate this new
system – or as little as possible.

The Local Server is a dedicated machine. It runs a Windows Server 2016 OS. Its main
specifications are:

 Intel Xeon 3.8GHz
 32GB Ram
 4x1TB HDD + RAID controller

The Proxy shields the Local Server connection to the Internet and provides naming and
HTTPS connections. It is part of the existing infrastructure of ASLTO5 network.

The PCs used to access the Professional Web Tool (PWT) will be the regular PCs used by
the health professionals. Since access to the PWT is through a Web Browser their
specifications will most likely not have any impact, but it is still worth taking into account.

The only specification regarding the Android Phones used by health professionals to take
measurements inside ASLTO5 premises is that they support Bluetooth Low Energy: The
sensor devices used at ASLTO5 as well as those given to patients are Bluetooth Low
Energy-compatible weight scales: A&D UC 352BLE and blood pressure sensors A&D UA
651BLE. The patients also have the wrist band Xiaomi Band 2.

D6.3: Site Acceptance Test Plan

43

The phones used by patients will be different models, as long as they are Android, have
Bluetooth, and are compatible with the requirements of the BodyCloud app. The BodyCloud
App is an existing software component that is not being tested in this SAT, we consider it to
be stable in regards of its communication features. If BodyCloud fails the E-Health system
does not fail: doctors can keep using the tool as usual, they just won’t get info from
BodyCloud devices. The interfaces between the mobile app and the server are part of the
BodyCloud system itself, which is considered to be tested.

The following scheme shows the deployment of main software subsystems:

Figure 16: INTER-Health Software overview

The Local Server runs Windows Server 2016 OS with nested virtualization capabilities. The
following table shows the installed software components that form each of the above
subsystems inside the Local Server. Some have to be run on top of a container software
(Docker) component that is also installed:

Component Subsystem Version Container

INTER-MW INTER-IoT 0.0.1-SNAPSHOT Apache Tomcat 8.5.23,
Java JDK 8

RabbitMQ INTER-IoT 3.7 Docker 17.09.1-ce-win42

WSO2 API Manager INTER-IoT 2.1.0 Docker 17.09.1-ce-win42

Kafka INTER-IoT 1.0.0 Docker 17.09.1-ce-win42

IPSM INTER-IoT 0.4.0.3 Docker 17.09.1-ce-win42

Parliament DB INTER-IoT - Docker 17.09.1-ce-win42

Professional Web Professional Web 1.0.0 IIS, .NET Framework 4.7

D6.3: Site Acceptance Test Plan

44

Tool Application Tool

MS SQL Server Professional Web
Tool

2014 Version
12.0.5204.0

Native (Windows)

MySQL BodyCloud Proxy 15.1 XAMPP v7.1.10

BodyCloud Proxy BodyCloud Proxy 1.0.2 Apache Tomcat 8.5.23

UniversAAL server UniversAAL
Middleware

3.4.1-SNAPSHOT Karaf OSGi 3.0.8, Java
JDK 8

Table 1: Local Server software components

*Docker 17.09.1-ce-win42: This version of Docker was tested prior to the SAT itself to be the one that works acceptably with the
environment. Newer and previous versions were tested, showing different issues

The phones will run either one of the applications in the following table. No phone will run
both applications at the same time. This accounts for patients’ phones and doctors’ phones,
which accomplish different use cases.

Application Version

BodyCloud INTER-Health App 0.0.1-SNAPSHOT

UniversAAL INTER-Health App 0.0.1-SNAPSHOT
Table 2: Android Phones applications

The browsers used by the HealthCare Professional PCs used in the test are the following,
although other browsers could be used after the deployment is tested:

Application Version

Mozilla Firefox 52.2

Google Chrome (if needed) Latest at the time of testing
Table 3: Healthcare Professional browsers

 Integration of IoT framework

As depicted above, INTER-IoT, in particular INTER-Framework, is used to allow the
Professional Web Tool to access data from two different IoT platforms. For this reason, only
the INTER-Middleware (or MW2MW) layer of INTER-Layer is of interest for the pilot.

All modules required to run INTER-Middleware are installed in the server, as listed above,
but no other layers are required. The goal is that the Professional Web Tool uses INTER-API
to access the required data through INTER-Framework, but in the FAT it will use a mix of API
and some hardcoded values, for simplicity and speed of development.

The following table lists the components of INTER-IoT that are installed in the FAT and, if
they do, how they interface with external components. Not shown are the other core
components that are always required to execute INTER-IoT (IPSM, Parliament, etc):

INTER-IoT Component Interface With component

INTER-Middleware (BodyCloud
Bridge)

BodyCloud’s local REST-API
and callback

BodyCloud Proxy

INTER-Middleware
(UniversAAL Bridge)

UniversAAL’s local REST-API
and callback

UniversAAL Middleware

INTER-API INTER-IoT local REST-API Professional Web tool

D6.3: Site Acceptance Test Plan

45

 Test coverage

Certain subsets of tests cannot be performed properly at this point given the deployment
configuration. Tests that alter the infrastructure of the site (like plugging or unplugging cables
or shutting down other systems) cannot be performed by SABIEN, since we do not have
physical access to it. It is not just the hardware is located in a different country, but also that
we are not allowed to physically access it (the hardware was sent to the ASLTO5 staff
already assembled and installed), we only have remote access via VPN and Remote
Desktop. We also cannot consider making tests that could affect hardware or software alien
to the project, or the network of the site itself, in order not to alter the normal operation of the
outpatient clinic. Finally, the security of the “external” remote accesses was also not tested
as they depend on the security configuration set up by ASLTO5 on their premises, which is
already existing and considered to be “tested” outside the scope of this project

 SAT execution remarks

During execution of the INTER-Health SAT a few issues where found while testing. All of
them were fixed, except for one related to Docker, which relies on a workaround. In this case
a series of patches have been made which makes it more maintainable to keep this
workaround than trying to fix it as that would cost a considerable amount of time.

The issue with the version of Docker for Windows (Community Edition) that we use. It is a
known issue, reported by the community:

https://github.com/docker/for-win/issues/573

https://github.com/docker/for-win/issues/426

It blocks ports opened by containers in Docker after an arbitrary amount of time or load (in
the pilot we have identified it happening every 2 days on average). When it was first
identified, it seemed to stem from the POSTGRESQL container. This in turn affected the
IPSM, and so on in cascade, until the INTER-MW stopped working properly. We observed
two things could happen: a) that the error happened only once (or some isolated times). If
this happened, it seemed INTER-MW kept working. b) That it happens continuously, (every
time IPSM tried to communicate with POSTGRESQL it failed). In this case, there is no other
solution than restarting Docker completely.

Eventually, we tried a possible fix by removing the POSTGRESQL container and relying on
other storage mechanisms. This removed the original problem from the POSTGRESQL
container, but the problem still manifested overall at the same intervals. This is in line with
the reports from the community stating there is actually no fix to this issue, other than
restarting Docker when it happens.

We set up a watchdog routine that checks periodically if INTER-MW is still working, and
restart it’s when it doesn’t. How this affects the users when the system is temporarily down,
depends on the IoT platform in use: If INTER-MW is not running when taking measurements
from UniversAAL, the doctors can realize that the system is not working properly because
the measure does not appear. Then a restart can be requested to technicians. For user
measures taken from BodyCloud, this is not perceivable. Measures simply will not arrive at
the backend and will not be available in the PWT. This is solved with an updated BodyCloud
server that holds measures if it cannot send them through INTER-MW, and re-sends them
when it is back up.

D6.3: Site Acceptance Test Plan

46

Proper fixes

As many Docker users comment in the reported issues, restarting Docker is simply a
workaround until the problem shows up again. The fix is to simply not use Docker for
Windows CE, as it is not stable enough. The alternative could be using a stable release of
Docker Enterprise Edition running on a Windows Server version.

INTER-MW uses Linux containers in Docker. They are supposed to run on a Linux host. On
the other hand, Docker for Windows CE by default uses Windows containers. To run Linux
containers, Docker for Windows CE relies on a virtual machine to run Linux containers. This
ability however is not available in Docker Enterprise Edition until a particular later version
with HyperV isolation, to be run with Windows Server version 1709 (Insider Preview build
16267). That Windows Server version is not a LTS (Long Time Support) version and was not
available to UPV to install in the INTER-Health server. In theory, installing this Windows
Server version with this Docker EE version could fix this issue, but there is no guarantee that
it will, as the community is still reporting some other issues on that version (including
POSTGRESQL, and RabbitMQ, still used by INTER-MW). That Windows Server version is
also a Core edition, which has no GUI, which means some of the platforms and tools
required for INTER-Health may not be compatible.

Another alternative solution would be to run a Linux virtual machine over Windows ourselves,
then install Docker for Linux on it. Since interactions between INTER-MW components are
made through mapped network ports and actual network interfaces, it should still work with
the rest of the system. However, this will require additional resources (memory, processor…)
and the server was not built with this in mind, and has not been tested. It would also be
complicated and time-consuming to set up remotely, now that the server machine is already
installed on pilot premises.

All these obstacles together are why we decided to continue with the current workaround
while the pilot lasts.

D6.3: Site Acceptance Test Plan

47

 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components Y

2 Validation and Test reports of the Professional Web Tool Y

3 Validation and Test reports of UniversAAL Y

4 Validation and Test reports of BodyCloud Y

Hardware

4 Local Server Y

5 Healthcare Professional PC Y

6 Android Phones (ASLTO5) Y

Tools

7 MS Windows Remote Desktop Y
Table 4: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

INTER-IoT

1 Java JDK 1.8 Y

2 Apache Tomcat 8.5.23 Y

3 Docker 17.09.1-ce-win42 Y

4 Parliament DB Y

5 IPSM 0.4.0.3 Y

6 Kafka 1.0.0 Y

7 WSO2 API Manager 2.1.0 Y

8 RabbitMQ 3.7 Y

9 INTER-MW 0.0.1-SNAPSHOT Y

Professional Web Tool

10 MS SQL Server 12.0.5204.0 Y

11 .NET Framework 4.7 Y

12 .NET Core Windows Server Hosting 1.0.4 & 1.1.1 Y

13 Professional Web Tool Application 1.0.0 Y

BodyCloud

15 XAMPP 7.1.10 Y

16 MySQL 15.1 Y

17 BodyCloud Proxy 1.0.2 Y

UniversAAL

18 Karaf OSGi 3.0.8 Y

19 UniversAAL Server (Middleware + REST API) 3.4.1-SNAPSHOT Y
Table 5: Component version overview

D6.3: Site Acceptance Test Plan

48

 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

62 Constraints on processing of personal and health data T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.3.2,
T1.3.3, T1.4.1, T1.4.2

71 Application response time T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.3.2,
T1.3.3, T1.4.1, T1.4.2

101 Exchanging discrete medical measures across platforms T1.3.1, T1.3.2, T1.3.3

102 Exchanging complex medical measures across platforms T1.3.1, T1.3.2

103 User Authentication to access INTER-Health services T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.3.2,
T1.3.3, T1.4.1, T1.4.2

104 Personal data and user profile management T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.3.2,
T1.3.3, T1.4.1, T1.4.2

106 Definition of reference meaning for health information (Theoretical, not testable
practically)

107 Exchanging synthetic or statistical health information between
platforms

T1.3.1, T1.3.2, T1.3.3

127 Availability of sensor data T1.3.1, T1.3.2

145 Informed consent. Processing of personal data T1.1.1, T1.1.2, T1.2.1

146 Information sheet. Processing of personal data T1.1.1, T1.1.2, T1.2.1

157 Seamless patient monitoring T1.3.1, T1.3.2, T1.3.3,
T1.4.1, T1.4.2

158 National, regional and local Bioethic Committee T1.1.1, T1.1.2, T1.2.1

164 Medical Device informatics T1.3.1, T1.3.2

172 User Access Service for Patients T1.1.3, T1.3.2, T1.3.3

173 User Access Service for Doctors T1.1.1, T1.1.2, T1.2.1,
T1.3.1, T1.4.1, T1.4.2

174 User Access Service for Administrators T1.1.1, T1.1.2, T1.2.1

176 User Access Gateway for Patients T1.1.3, T1.3.2

177 User Access Gateway for Caregivers T1.3.1

188 Integration with legacy systems T1.1.1, T1.1.2, T1.2.1,
T1.4.1, T1.4.2

217 Wearable devices support T1.3.2

218 Personal data collected on Computerized Nutritional Folder T1.2.1, T1.3.3, T1.4.2
Table 6: Requirements vs. test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

1 Chronic disease prevention All

11 Primary prevention of cognitive decline

12 Health failure disease and mild Alzheimer disease

15 Surveillance systems for prevention programs All

16 Elderly monitoring All

D6.3: Site Acceptance Test Plan

49

21 Low risk of developing chronic diseases. All

22 Increased risk of developing chronic diseases All

23 High risk of developing chronic diseases All

24 Very high risk of developing chronic diseases All

25 Extremely high risk of developing chronic diseases All

27 Vitamins intake analyser

28 Calories / nutrition mixer / cookware counter
Table 7: Scenario vs test mapping

 Test environment

3.2.6.1 Introduction

To test the functionality of the integrated INTER-Health in combination with the IoT
framework representative test hooks in the system are needed. This chapter will describe
this environment and the used hardware, software, tools and platforms.

3.2.6.2 Test environment

For details, refer to system description in section 3. The environment for the test comprises:

The server machine: This computer is located in the premises of ASLTO5, with restricted
physical access allowed only to ASLTO5 personnel.

The local network used in the test is the one at the Healthcare center that will be used in the
real deployment. It is managed by ASLTO5 staff, as well as the proper sub-networks,
firewalls and proxies. The performance and stability of the network is not under test in this
SAT: We do not have the access privileges to test it, it would be disruptive for ASLTO5, and
we can consider it to be stable enough given it is the one used for their daily operations.

The computers for web access to the PWT are the Healthcare professional’s desktops, as
well as, for some tests, the local server machine. They all run on different versions of
Windows with either Firefox or Chrome installed to do the end-user tests of the Professional
Web Tool.

All access to tools, hooks and probes by UPV-SABIEN developers are performed in the local
server through Remote Desktop via VPN for the duration of the tests.

The mobile phones used are the ones from ASLTO5 for “local” tests, and a developer phone
Motorola Moto G4 running Android 6.0 or 7.0 to perform tests from UPV. It is possible
however that during the course of the test other phone models are tested, if available.

The sensor device models used in the test will be the same as those used by patients and
ASLTO5: A&D UA 651BLE and A&D UC 352BLE, and Xiaomi Band 2.

The role of patients and healthcare providers will be performed indistinctively by any of the
UPV-SABIEN and ASLTO5 staff at convenience.

 Test tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

D6.3: Site Acceptance Test Plan

50

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Overall test setup

This generic setup is used in all tests: A UPV-SABIEN/ASLTO5 tester plays the role of
patient and has access to one mobile phone, already paired to each of the available sensor
devices. The tester interfaces directly with the sensors to make measurements, and with the
applications in the phone.

Another ASLTO5 tester, playing the role of Healthcare professional, has access, through
his/her computer, to the Professional Web Tool. We take into account the fact that
Healthcare professionals have had a minimum of training with the tool before using it, so we
will not test random clicking (Monkey testing). During their training, it was proved that this
was not an issue.

Finally, another UPV-SABIEN tester will act as observer and accesses the server through
remote desktop to monitor the running programs and obtain the required results.

TT_01 Microsoft Windows Remote Desktop

Access to the software running in the server is performed through Remote Desktop. UPV-
SABIEN testers have access to this server and monitor it in real time while the tests are
performed, and obtain all necessary outputs.

TH_01 INTER-IoT Message Emulators

There are emulators that publish sensor data as if it came from either BodyCloud or
UniversAAL. These are not officially part of any test, but may be used in case of issues with
real data, in order to compare as a baseline or to test the overall system when needed.

TP_01 IoT Platforms consoles

Both UniversAAL and BodyCloud are installed in the system server. Some of their outputs
can be observed in real time through their consoles. This can help identify crashes or
problems as they happen.

TP_02 IoT Platforms output logs

Both UniversAAL and BodyCloud are installed in the system server. They generate output
log files stored in the server that can be obtained after running, or even while the system is
running, depending on the log editor used. This can help identify crashes or problems after
they happen. For security reasons, file paths to logs shown in the tests descriptions below do
not contain actual, full paths.

D6.3: Site Acceptance Test Plan

51

TP_03 Android Studio

Console output and logs from the mobile phones can be accessed through Android Studio. In
order to enable this, the phones used in the tests have to enable their “developer options”,
connect to a PC through USB and allow debugging. This is only available at the developer
phone used by UPV-SABIEN.

 Test description

3.2.8.1 Scenario 1, 15, 16, 21, 22, 23, 24, 25

U1 – Creates and operates users/services

T1.1.1 Professional creates user

ID T1.1.1

Test The Healthcare Professional enters the system and creates a new patient user

Type Manual test

Setup TS_01, TT_01

Start First time run, empty records, Patient has been given phone and documentation

Req. [62], [71], [103], [104], [145], [146], [158], [173], [174]

Input Healthcare Prof. enters PWT, authenticates.
Healthcare Prof. enters option to create new patient
Healthcare Prof. enters patient data and confirms creation

Output The new Patient is registered in the system
The Patient can now use the system as intended

Logs {PWT}\Daemons
{InternetServer}\INTER-IoT\Logs

Outcome Pass / Fail

T1.1.2 Professional modifies user

ID T1.1.2

Test The Healthcare Professional enters the system and updates a patient’s data

Type Manual test

Setup TS_01, TT_01

Start Patient was already created in the system, Patient has been given phone and
documentation

Req. [62], [71], [103], [104], [145], [146], [158], [173], [174]

Input Healthcare Prof. enters PWT, authenticates.
Healthcare Prof. enters option to update patient
Healthcare Prof. enters new patient data and confirms update

Output The Patient’s new data is registered in the system
The Patient can continue to use the system as usual

Logs {PWT}\Daemons
{InternetServer}\INTER-IoT\Logs

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

52

T1.1.3 Patient logs with their profile

ID T1.1.3

Test Patient enters the system through his/her mobile phone apps to access data

Type Manual test

Setup TS_01, TT_01, TP_01, TP_02, TP_03

Start Patient is in possession of mobile phone with installed app
Patient has been registered in the system with proper data

Req. [62], [71], [103], [104], [172], [176]

Input Patient enters BC app, authenticates, checks data

Output Patient successfully accesses app
Patient can check up-to-date data

Logs {PWT}\Daemons
{InternetServer}\INTER-IoT\Logs

Outcome Pass / Fail

U2 – Set patient protocol parameters

T1.2.1 Professional sets protocol

ID T1.2.1

Test The Healthcare Professional enters the system and updates a patient’s protocol

Type Manual test

Setup TS_01, TT_01

Start Patient was already created in the system, Patient has been given phone and
documentation

Req. [62], [71], [103], [104], [145], [146], [158], [173], [174], [218]

Input Healthcare Prof. enters PWT, authenticates.
Healthcare Prof. enters option to update patient
Healthcare Prof. enters new patient protocol and confirms update

Output The Patient’s new data is registered in the system
The Patient can continue to use the system as usual, according to new protocol

Logs {PWT}\Daemons
{InternetServer}\INTER-IoT\Logs

Outcome Pass / Fail

U3 – Perform objective and subjective measures

T1.3.1 Professional collects measures (objective)

ID T1.3.1

Test Healthcare Professional takes measures from Patient at centre using devices

Type Manual test

Setup TS_01, TT_01, TH_01, TP_01, TP_02, TP_03

D6.3: Site Acceptance Test Plan

53

Start Patient has been registered in the system with proper data
Healthcare prof. is in possession of mobile phone with installed app
Sensor devices are paired to mobile phone

Req. [62], [71], [101], [102], [103], [104], [107], [127], [157], [164], [173], [177]

Input Healthcare Prof. enters PWT, authenticates.
Healthcare Prof. enters option to update patient measures
Healthcare Prof. enters UniversAAL app, authenticates
Patient takes measurement on centre sensor device

Output Patient measure appears on uAAL app and PWT, allowing Healthcare Prof. to
update patient measure data

Logs {uAAL}\data\log

Outcome Pass / Fail

T1.3.2 Patient performs measures (objective)

ID T1.3.2

Test Patient takes measures at home using devices

Type Manual test

Setup TS_01, TT_01, TH_01, TP_01, TP_02, TP_03

Start Patient has been registered in the system with proper data
Patient is in possession of mobile phone with installed app
Sensor devices are paired to mobile phone

Req. [62], [71], [101], [102], [103], [104], [107], [127], [157], [164], [172], [176], [217]

Input Patient successfully accesses app
Patient takes measurement on home sensor device

Output The measure is registered in the system at the Healthcare centre and can be
checked by Healthcare Prof. in PWT.

Logs {tomcat}\logs

Outcome Pass / Fail

T1.3.3 Patient performs measures (subjective)

ID T1.3.3

Test Patient answers questionnaire about habits

Type Manual test

Setup TS_01, TT_01, TP_01, TP_02, TP_03

Start Patient has been registered in the system with proper data
Patient is in possession of mobile phone with installed app
Healthcare Prof. has set protocol

Req. [62], [71], [101], [102], [103], [104], [107], [157], [172], [218]

Input App notifies Patient about questionnaire
Patient successfully accesses app
Patient takes questionnaire

D6.3: Site Acceptance Test Plan

54

Output The measure is registered in the system at the Healthcare centre and can be
checked by Healthcare Prof. in PWT.

Logs {tomcat}\logs

Outcome Pass / Fail

U4 – Monitors subjective and objective parameters

T1.4.1 Professional monitors parameters (objective)

ID T1.4.1

Test Healthcare Professional accesses Patient data recorded through sensors

Type Manual test

Setup TS_01, TT_01, TH_01, TP_01, TP_02

Start Patient has been registered in the system with proper data
Patient has recorded objective measures
Healthcare prof. has recorded objective measures of patient

Req. [61], [71], [103], [104], [157], [173]

Input Healthcare Prof. enters PWT, authenticates.
Healthcare Prof. enters option to observe patient measures

Output The PWT displays the measures taken with the sensors

Logs {PWT}\Daemons
{InternetServer}\INTER-IoT\Logs

Outcome Pass / Fail

T1.4.2 Professional monitors parameters (subjective)

ID T1.4.2

Test Healthcare Professional accesses Patient data recorded through questionnaires

Type Manual test

Setup TS_01, TT_01, TH_01, TP_01, TP_02

Start Patient has been registered in the system with proper data
Patient has recorded objective measures
Healthcare prof. has recorded objective measures of patient

Req. [61], [71], [103], [104], [157], [173], [218]

Input Healthcare Prof. enters PWT, authenticates.
Healthcare Prof. enters option to observe patient measures

Output The PWT displays the measures taken with the questionnaires

Logs {PWT}\Daemons
{InternetServer}\INTER-IoT\Logs

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

55

 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T1.1.1 Professional creates user Pass / Fail

T1.1.2 Professional modifies user Pass / Fail

T1.1.3 Patient logs with their profile Pass / Fail

T1.2.1 Professional sets protocol Pass / Fail

T1.3.1 Professional collects measures (objective) Pass / Fail

T1.3.2 Patient performs measures (objective) Pass / Fail

T1.3.3 Patient performs measures (subjective) Pass / Fail

T1.4.1 Professional monitors parameters (objective) Pass / Fail

T1.4.2 Professional monitors parameters (subjective) Pass / Fail

SAT Outcome Pass / Fail
Table 8: Test outcome overview

 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

INTER-Health

UPV-SABIEN and ASLTO5 have made the necessary legal arrangements, and UPV-
SABIEN acts as the Data Processor. The Data Processor is the role in charge of managing
the access to sensitive data in the Local Server in these tests. Access from UPV is through
Remote Desktop via VPN, and the raw data of the (test) patients is not accessed directly. We
trust the physical security of ASLTO5 infrastructure, as well as the security of the tools used
to access the system remotely (the aforementioned VPN and Remote Desktop tools, and the
HTTPS access and security mechanisms instilled by the Proxy for remote app data reporting
and web access). Test patients have been set up to perform the tests. When the tests are
finished, the test patients are not removed, but disabled, and that is taken into account for
the remainder of the pilot operation. The Data Processor is the only one with credentials to
access the underlying database of the Professional Web Tool holding the sensitive data. Still,
some fields (like those related to authentication) of the data are encrypted and even the Data
Processor cannot inspect them. All other remaining issues regarding security of the
infrastructure are managed by ASLTO5 as the security of their own premises.

D6.3: Site Acceptance Test Plan

56

 Open Call SAT’s

 Third Party: SensiNact

The SensiNact Gateway allows interconnection of different networks to achieve access and
communication with embedded devices and/or cloud-based services. It is composed of a set
of functional groups and their relative interfaces; both can be seen in the Figure 17. Below it
is a non-exhaustive list of the components present in the platform.

 The Device Protocol Adapter abstracts the specific connectivity technology of wireless
sensor networks. It is composed of the bridges associated to protocol stacks. All the
bridges comply with a generic Device Access API used to interact with northbound
SensiNact’s services.

 The Smart Object Access and Control implements the core functionalities of SensiNact
like discovering devices, resources and securing communication among devices services
and their consumers.

 The Consumer API is protocol agnostic and exposes services of the Smart Object
Access and Control functional to Consumers.

 The Consumer Protocol Adapter consists of a set of protocol bridges, translating the
Consumer API interface into specific application protocols.

 The Gateway Management functional group includes all the components needed to ease
management of devices connected to SensiNact, regardless of their underlying
technologies. A Device Management API is used for this purpose. This functional group
also contains the components managing cache, resource directory and security services.
These management features are exposed by means of the Manager API.

 Manager Protocol Adapter allows adapting the Gateway Management API to the specific
protocols used by different external management entities.

Figure 17: SensiNact Gateway overall architecture

D6.3: Site Acceptance Test Plan

57

In terms of connectivity:

On the southbound side SensiNact gateway allows to cope with physical device protocols
and virtual device, allowing a uniform and transparent access to given protocol, for example
ZigBee network, HTTP Restful web service. Below it is a list of supported protocols:

 EnOcean, concerting energy harvesting wireless sensor technology (ultra-low-power
radio technology for free wireless sensors), and protocols in use to interact with
those sensors;

 BLE, Bluetooth Low Energy , which is a WPAN, low power protocol designed mainly
for healthcare or entertainment applications;

 MQTT, which is a machine-to-machine protocol, lightweight publish/subscribe
messaging transport, useful for connections with remote locations where a small code
footprint is required and/or network bandwidth is at a premium;

 ZigBee radio communication protocol for low consumption short range designed for
WPAN (XBee for example);

 CoAP which is REST application protocol, designed to be “the HTTP for constrained
networks and devices” whose concept originated from the idea that "the Internet
Protocol could and should be applied even to the smallest devices," and that low-
power devices with limited processing capabilities should be able to participate in the
Internet of Things; it is usually used on top of a 6LoWPAN network, but it may travel
regular IP networks as well (it is used by the OMA LWM2M protocol, for instance);

 EchoNet, Japanese communication protocol designed to create the “smart houses”
of the future. Today, with Wi-Fi and other wireless networks readily available in
ordinary homes, there is a growing demand for air-conditioning, lighting and other
equipment inside the home to be controlled using smartphones or controllers, or for
electricity usage to be monitored in order to avoid wasting energy.

On the northbound side the SensiNact gateway provides both client/server and
publish/subscribe access protocols:

 MQTT;
 JSON-RPC (1.0 and 2.0);
 HTTP RESTful
 CDMI

D6.3: Site Acceptance Test Plan

58

Figure 18: SensiNact Southbound and Northbound bridges

The Smart Object Access and Control functional group described in this previous section
includes a large number of functionalities, among them:

Figure 19: SensiNact Gateway internal architecture

 It handles the communication with the Consumer Protocol Adapter (REST API, JSON
RPC, etc.) and IoT (and non-IoT) devices, providing URI mapping, incoming
data/messages translation in an internal format and outgoing data/messages translation
in Consumer format. Whenever a Consumer tries to access a resource via Consumer
API, the requested URI is forwarded to the Resource Manager in order to check if a

D6.3: Site Acceptance Test Plan

59

specific resource descriptor exists or not inside the Resource Directory and to verify its
accessibility status. If a resource descriptor doesn’t exist, a message response with error
code is returned to the Consumer API. Otherwise, the request is forwarded to the right
interface. At the same time whenever response is originated from IoT device (or abstract
IoT device), it will be also forwarded to its logical counterpart in order to update the
resource representation in the gateway.

 It manages the subscription/notification phases towards the Consumer, if it is not
handled by the targeted device (service) itself

 It supports Devices and Resource Discovery and Resource Management capabilities, to
keep track of IoT Resource descriptions that reflect those resources that are reachable
via the gateway. These can be both IoT Resources, or resources hosted by legacy
devices that are exposed as abstracted IoT Resources. Moreover, resources can be
hosted on the gateway itself. The Resource Management functionality enables to publish
resources in SensiNact, and also for the Consumer to discover what resources are
actually available from the gateway; SensiNact Service and Resource model allows
exposing the resources provided by an individual service. The latter, characterized by a
service identifier, represents a concrete physical device or a logical entity not directly
bound to any device. Each service exposes resources and could use resources provided
by other services. Figure 20 below depicts the Service and Resource model:

Figure 20: SensiNact Service and Resource model

The Resource Directory allows storing information, i.e. resource descriptions, about the
resources provided by individual devices connected to SensiNact. It also supports resource
description look up, as well as publishing, updating and removing resource descriptions.

Discovering and using resources exposed by Services is the preferred approach for avoiding
using static service interfaces, thus increasing interoperability. Therefore, SensiNact
Services and their exposed resources are registered into Service/Resource repositories. The
gateway uses the OSGi service registry as Service/Resource repository, where resources
are registered as service properties. Clients ask the Service/Resource repository for
resources fulfilling a set of specified properties (defined by LDAP filters). In response, the
Service/Resource repository sends clients the list of service references that expose the

D6.3: Site Acceptance Test Plan

60

requested and authorized resources. Clients can then access/manipulate the resources
exposed by their selected service objects.

Figure 21: SensiNact’s service oriented approach

Resources and services can be available for remote discovery and access using different
communication protocols, such as HTTP REST, JSON-RPC, etc. Advanced features may
also be supported (as semantic-based lookup). Resources can be classified as shown in
Table 9, while the access methods are described in Table 10.

Table 9 Resource types

Type Description

SensorData Sensory data provided by a service. This is real-time information provided,
for example, by the SmartObject that measures physical quantities.

Action Functionality provided by a service. This is mostly an action on the
physical environment via a SmartObject actuator supporting this
functionality (turn on light, open door, etc.) but can also be a request to do
a virtual action (play a multimedia on a TV, make a parking space
reservation, etc.)

StateVariable Information representing a SmartObject state variable of the service. This
variable is most likely to be modified by an action (turn on light modifies
the light state, opening door changes the door state, etc.) but also to
intrinsic conditions associated to the working procedure of the service

Property Property exposed by a service. This is information which is likely to be
static (owner, model, vendor, static location, etc.). In some cases, this
property can be allowed to be modified.

Table 10 Resource's access methods

Type Description

GET Get the value attribute of the resource

SET Sets a given new value as the data value of the resource

ACT Invokes the resource (method execution) with a set of defined
parameters

SUBSCRIBE Subscribes to the resource with optional condition and periodicity

UNSUBSCRIBE Remove an existing subscription

D6.3: Site Acceptance Test Plan

61

The access methods that can be associated to a resource depend on the resource type, for
example, a GET method can only be associated to resources of type Property, StateVariable
and SensorData. A SET method can only be associated to StateVariable and modifiable
Property resources. An ACT method can only be associated to Action resources.
SUBSCRIBE and UNSUBSCRIBE methods can be associated to any resource type.

Protocols and data formats

The SensiNact gateway uses JSON formatted data. The resource model is a hierarchical
five-tiered tree: A Device owns Services which in turn own Resources, which hold Attributes,
and its metadata. To describe one element of this tree there is no restriction about how many
sub-elements it can contain. The description of a resource and its value (result of an access
method execution) are distinct from one to the other. The choice of this separation is to
lighten the work of components whose work is to process the result of an access method
execution, by avoiding the reification of high level data structures to only extract the content
of one (or two) attribute(s).

Device Description

As only the resources are the containers of information, those which target the device are
grouped in a specific service which is the administration one (« AdminService » prefixed).
Those resources can be one specifying the location, or the vendor of the device, or any other
data that are common to all provided services (and so resources). Formally, a device is a
JSON object containing an array of services. The list of the services a device provides can
be summarized or detailed. If it is summarized, only the name of the services are part of the
description (otherwise each service is completely described).

{

 "serial-number":"fake-1234",

 "services":[

 {

 "ID":"AdminService_f1To4"

 },

 {

 "ID":"temperature_f1To4"

 }

]

}

Service Description

It gathers resources, and it references the unique identifier of the device holding it. It
represents the entry point to access to resources through the OSGi context. The list of the
resources a service provides can be summarized or detailed. If it is summarized only the
name and the type of the resource are part of the description (otherwise each resource is
completely described).

D6.3: Site Acceptance Test Plan

62

{

 "ID":"AdminService_f1To4",

 "properties":[

 { "device.serial-number":"fake-1234"}

],

 "resources":[

 {"name":"location","type":"property"},

 {"name":"owner","type":"property"},

 {"name":"vendor","type":"property"},

 {"name":"SLEEP","type":"action"}

]

}

Resource description

 The data structures are mainly nested in triplets : name, type and value;
 The type of the resource itself can be : property, variable, sensor, or action;
 The type key of a 'name-type-value' data structure (embedded in the resource

description) can have a primitive as value (byte, short, int, long, double, char, boolean,
[string]) or the canonical name of the java class used to reify it in the gateway;

 For each resource access method signatures are also described in a JSON array. Some
of them can be shortcuts to other ones: a GET method without parameter is a shortcut to
the GET method whose unique parameter "attributeName" has for value "value", for
example. A parameter of an access method can be completed with the constraints which
apply on it (« min », « max », « fixed », regular expression « pattern », « enumeration »
of allowed values) or the JSON schema of the expected JSON object from which to reify
the appropriate Java object in the gateway;

 At least two metadata exist for each attribute: the "hidden" one defining whether the
attribute has to be specified in the description of the resource, and the "modifiable" one
defining whether the value of the attribute can be modified by the client. By default, the «
hidden » attribute is not visible in the description (if the attribute is visible that's mean that
this metadata value is set to false, and if it is set to true the client is, at the end, not aware
of that);

 A metadata specified as « dynamic » will be added to the result of an access method
execution

 Timestamps are « epoch » formatted (number of seconds since 1970 January the first) ;
To avoid the reification of high level objects to make calculations (that are at least as
easy with this format). High level programming languages handle this format. It is also
possible to multiply it by 1000 if handling of milliseconds is needed (what is done natively
by java for example).

D6.3: Site Acceptance Test Plan

63

{

 "name":"temperature",

 "type":"sensor",

 "attributes":[

 { "name":"value","type":"int",

 "metadata":[

 {"name":"modifiable",“type":"boolean","value":false,"dynamic":false},

 {"name":"timestamp","type":"long","value":1418541626,"dynamic":true},

 { "name":"description","type":"string","value":"temperature measure","dynamic":false},

 { "name":"unit","type":"string","value":"celsius degree","dynamic":false}

]

 }

],

 "accessMethods":[

 {

 "name":"GET",

 "parameters":[

] },

 {

 "name":"GET",

 "parameters":[

 { "name":"attributeName","type":"string"}

] },

 {

 "name":"SUBSCRIBE",

 "parameters":[

 { "name":"listener","type":"object",

 "schema-id":"http://fr.cea.SensiNact/subscription/listener",

 "description":"parameter value example: ‘{\"callback\":\"<uri>\"}’ "

 },

 {

 "name":"condition",

 "type":"object",

 "schema-id":"http://fr.cea.SensiNact/subscription/condition",

 "description":"parameter value example: ‘{ \"condition\":\"less\", \"value\":\"5\"}’"

 },

 {

 "name":"lifetime",

 "type":"long"

 }

D6.3: Site Acceptance Test Plan

64

]

 },

 {

 "name":"SUBSCRIBE",

 "parameters":[

 {

 "name":"listener",

 "type":"object",

 "schema-id":"http://fr.cea.SensiNact/subscription/listener",

 "description":"parameter value example: ‘{\"callback\":\"<uri>\"}’ "

 }] },

 {

 "name":"UNSUBSCRIBE",

 "parameters":[

 {

 "name":"subscriptionID",

 "type":"string"

 }] }

]

}

Access Method result

{

 "name":"temperature",

 "type":"int",

 "value":22,

 "timestamp":1418541626

}

As it is the « default » attribute, asking for the value of a resource providing one returns a
JSON formatted data structure in which the "name" key has the name of the resource as
value (instead of "value" as it could have been expected).

Location resource

The location of a device (service, resource) is frequently a needed context information. By
default a device always contains one (its administration service in fact), and a link to it is
created in all services it provides. If needed, a link to this resource could also be created as
an attribute of all resources (mainly if this location is supposed to change frequently and so
to avoid to require the complete device description to update the information). Its content is
not restricted (as it is the case for the others) and can so contain attributes defining
longitude, latitude, altitude, a friendly name or whatever is needed to specify it (for now we
are using « <latitude>,<longitude> » formatted string as value)

D6.3: Site Acceptance Test Plan

65

Device Access Control

This section explains the security definition and method into SensiNact architecture.

Security and access policies

A first level of security is reached by the way of some of available security "tools" in the OSGi
environment: ServicePermission and ConditionalPermissionAdmin.

The ServicePermission is a module's authority to register or use a service.

 The register action allows a module to register a service on the specified names.
 The get action allows a module to detect a service and use it.

Permission to use a service is required in order to detect events regarding the service.
Untrusted modules should not be able to detect the presence of certain services unless they
have the appropriate ServicePermission to use the specific one.

The ConditionalPermissionAdmin is framework service to administer conditional permissions
that can be added to, retrieved from, and removed from the framework.

The SensiNact gateway defines service permissions in such a way that access to the ones it
provides is forbidden excepted if a specific condition is met (a SensiNact specific conditional
permission). This condition being that the requirer is the SensiNact SecuredAccess service.
Even SensiNact services have to use the SecuredAccess one to be able to “talk” to each
other’s; Modalities of such exchanges depend on the UserProfile of the user of these
services (the user can be the system itself). A UserProfile can be defined at each level of the
hierarchical SensiNact resource model: ServiceProvider, Service, and Resource. Five
UserProfiles exist for which predefined access rights are defined: Owner, Administrator,
Authenticated, Anonymous, and Unauthorized.

When asking for a data structure of the SensiNact resource model, the access rights of the
user are retrieved; the set of this user's accessible AccessMethods for the specific data
structure is built and returned as part of the description object. Each future potential
interaction of the user on the data structure will be made by the way of this description
object. For a remote access a security token is also generated and transmitted to the user, to
avoid repeating the security policy processing. A token is defined for a user and a data
structure (and so it previously created description object).

D6.3: Site Acceptance Test Plan

66

Figure 22: SecuredAccess Sequence Diagram

The Authenticaton Authorization Access service can be externalized; It is used to retrieve
identity material from which it is be possible to associate a user and a SensiNact resource
model data structure to a UserProfile (the SensiNact platform manages a database linking
this identity to a UserProfile for a specific data structure). For all data structures for which
the user has not been registered the Anonymous UserProfile is used by default (except if the
owner of a resource has defined this default profile to another one). The internal database
also gathers information relative to the minimum required UserProfile to access to data
structures. This definition can be made at each level of the resource model, knowing that if
no UserProfile is defined for a data structure, the one specified for its parent is used.

Figure 23: Access right inheritance diagram example

D6.3: Site Acceptance Test Plan

67

For example, according to the diagram shown above, a user trying to access to the
ServiceProviderX for which its UserProfile is Anonymous will receive a description object in
which only one Service will be referenced (ServiceX1), containing a single Resource
(ResourceX1S2) providing two AccessMethods, GET and SUBSCRIBE.

Federation approach

SensiNact is based on a service-oriented approach where its functionalities are
exported in terms of services, which allows easy integration of those features within the
federated FESTIVAL’s Experimentation Testbeds as a Service.

Application Manager

SensiNact has a component named AppManager, this component aims to create higher level
applications based on the resources provided by the SensiNact gateway and which the life-
cycle can controlled by the SensiNact gateway.

AppManager provides a way to develop event driven applications, i.e., based on the Event-
Condition-Actions (ECA) axiom. Thus, the application is only triggered when the required
events occur. Then, if all conditions are satisfied, the actions are done. Events are created
from sNa sensors and the actions are performed using the sNa actuators available in the
environment.

Data model and JSON format

The AppManager assumes that an application is a set of bound components. Each
component processes a single function (e.g., addition, comparison, action). The result of this
function is stored in a variable in the current instance of the application. The components
using this result as input listen to the corresponding variable. When the variable changes,
they are notified and can process their own function, leading to a new result.

Figure 24: Architecture of a sNa component.

The component is the atomic element of an application, thus an application can consider a
single component to perform an action. It holds the minimal requirements to create an ECA
application:

 Events: events that trigger the process of a component. Trigger can be conditioned to
a specific event or a specific value of the event (e.g., when the value of the sensor
reach a threshold) ;

D6.3: Site Acceptance Test Plan

68

 Function: function wrapped in the component (e.g., addition, comparison, action). The
acquisition of the parameters is realized in the transition block before the function
block;

 Parameters: parameters of the function that are not available in the event (e.g., static
value, sensors values).

 Output: result of the function that is stored in a variable and that triggers a new event.

 Properties: non-functional properties of the component (e.g., register the result as a
new resource in sNa).

The AppManager is a sNa service provider. Thus like any other resource it provides a set of
resources; in this specific case an INSTALL and an UNINSTALL resources, enabling a client
to install/uninstall an application.

A sNa application is described using a JSON file. We developed a specific Architecture
Description Language (ADL) to describe the components used in an application and the
bindings between the components.

The following JSON code example corresponds to the code of a single component:

This component specifies that when the resource1 is greater or equals to 100, the
function_name is called with the string parameter "ON". The result of the function is stored in
the output_name variable and triggers a new event that may be used by others components.

The supported types are:

 Primitives types: integer, boolean, long, double, float, string. This is used to described
a static variable;

 Resource type: resource. This is used to refer to a resource. If this is set in the JSON
Event section of the JSON, a SUBSCRIBE is done on the resource. If this is done in

{

"events": [{

"value": "resource1",

"type": "resource",

"condition": {

"operator": ">=",

"value": 100,

"type": "integer"

}

}],

"function": "function_name",

"parameters": [{

"value": "ON",

"type": "string"

}],

D6.3: Site Acceptance Test Plan

69

any JSON Parameters section, a GET is done on the resource and returns the
current value;

 Variable type: variable. This is used to refer to the output of a previously processed
component;

 Event type: event. This is used to refer to the value of the event that triggers the
function. This type is never used in the condition of the JSON Event section.

Here after is a synthesis of the type that can be used in the different parts of the JSON file.

 Primitive
types

Resource
type

Variable type Event type

In event type No Yes Yes No

In event/condition type Yes Yes Yes No

In parameters type Yes Yes Yes Yes

Table 11: Types used in the JSON component

The AppManager supports the validation of the JSON files against a JSON schema.
Schemas exist in the plugins and may be used by the developers of the applications.

Architecture

The AppManager is designed to be used as any sNa service provider. Thus it provides an
“Install” and an “Uninstall” resource, enabling a client to install/uninstall an application. These
resources are accessible using different bridges, such as any actuators.

The AppManager architecture is also designed to easily add new functions and to handle the
lifecycle of applications in order to perform checks.

Plugins

Plugins enable to add new function to the AppManager. New plugins require to implements
the mandatory interfaces Java interface to be found in the OSGi registry and thus be used by
the AppManager. The AppManager is currently supporting the following functions.

Table 12: Functions supported by the plugins of the AppManager

PLUGIN FUNCTIONS SUPPORTED
BASIC
PLUGIN

various operators (e.g., equals, greater than, lesser than, different), addition,
subtraction, division, multiplication, modulo, concatenation, substring, ACT and SET
methods on resources

CEP PLUGIN after, before, coincides, average, average deviation, count, max, min, median,
standard deviation, sum

Lifecycle

The AppManager provides a lifecycle to manage the applications. It enables to process
various checks during different steps of the lifecycle of the application (e.g., ADL
consistency, resource permissions). The first step is to install the application, i.e., send the
ADL of the application. If there is a problem, the AppManager returns an error. Once the
application is installed, it can be started and its state changes to “Resolving”. If there is a
problem during this step, the application enters in the “Unresolved” state. Otherwise, the
application is active until it is stopped or an exception occurs.

D6.3: Site Acceptance Test Plan

70

Figure 25: Lifecycle of an application.

Instances

The AppManager allows multiple instances of the same application to run in parallel. When
an event occurs, the InstanceFactory of the application instantiates a new set of components
and passes the event to the first component. The number of instances can be set in the
application properties. If, there is more events than available instances, events are stored
and processed when an instance ends.

SensiNact Studio

SensiNact Studio allows an easy interaction with the IoT devices and the creation of
applications. The Studio is based on the Eclipse platform and built as a rich client platform
application. The Graphical User Interface (GUI) is developed using the views mechanism
from Eclipse. Thus, it proposes views for browsing devices, locating devices on a map and
interacting with them, i.e., getting value from sensors or performing actions on actuators. The
Studio is also targeted to ease the creation of IoT application following the Event-Condition-
Action (ECA) pattern.

Figure 26: SensiNact Studio Graphical User Interface.

D6.3: Site Acceptance Test Plan

71

The GUI (Figure 26) includes different views: navigator, deployment, properties views, as
well as a Domain Specific Language (DSL) editor.

Browsing devices

Before users can use the studio for managing devices and applications, they need to connect
a SensiNact gateway. This action is performed by clicking on the plus sign icon on the device
navigator. Then, gateway information have to be provided (Figure 27).

Figure 27: Gateway configuration.

Once the information have been provided and the dialog validated, the Gateway is added to
the Navigator View. To display and browse the available devices imported by this gateway,
connecting to it is needed. This action is performed using the connect button (Figure 28).

Figure 28: Gateway connection.

The device Navigator View is then populated, and pin points are displayed on the map. By
clicking on attributes names, it is possible to get the current value for the considered

D6.3: Site Acceptance Test Plan

72

attribute. It is also possible to see attributes values on the map, clicking on the pin points
(see Figure 28).

Application creation

Figure 29: Application creation.

The SensiNact Studio allows the creation of applications to be executed on the gateway.
Creating an application is performed by writing a script using a dedicated syntax, and
deploying this script to the gateway.

On Figure 29, a project has been created on the project explorer view (on the left). In this
project, a script named speed-limit.sna has been created, and is being edited. As the figures
shows, the editor provides code highlighting (some keywords are displayed in a special font),
code completion (with popups) and a syntax validator which displays red crosses on the
script margin in case of error.

The dedicated syntax, a Domain Specific Language, is composed by the following blocks:

 The shortcut block: each resource is accessible through a unique URI, which can be
quite long. This block aims at creating shortcut for the next blocks.

 The event block: the developer defines on which resources the application is
triggered. When an event is thrown and is a valid trigger, the conditional block is
executed.

 The conditional block: once the application has been triggered, and before any action
can be executed, the data from the resource has to satisfy the conditional block. The
keyword for this block is if followed by the conditions to be validated.

 The actions statements: if the conditional block is satisfied, actions are performed in
the order that they are listed. The actions can be physical actions on actuators or
virtual actions such as changing the format of a data using a mathematical function.
The available actions, also named functions, are listed below:

 Basic functions: addition, subtraction, division, multiplication, modulo, string
concatenation, substring, various operators (e.g., equals, greater than, lesser than,
different), ACT and SET methods on SensiNact resources.

 Complex Event Processing functions: after, before, coincides, average, average
deviation, count, max, min, median, standard deviation and sum.

D6.3: Site Acceptance Test Plan

73

Table 13 shows the basic structure for writing a script.

[resource<resource>]+ Shortcut block, which must contains at least one statement.

on<events>+ The event block, lists the events triggering the script. At least one
event must be provided.

[if<condition>do]+
[<actions>]+
[else do]?
[<actions>]?+

end if;

The conditional block, which lists actions to be performed based on
conditions.

Table 13: SensiNact Domain specific language basic syntax

Once the script has been written, it can be deployed to the gateway where it will be
executed. This is performed using a right click on the script file (see Figure 30).

Figure 30: Application deployment.

Application monitoring

After the application has been deployed, a new set of resources is automatically created
under the AppManager device. You can browse those resources into the Device Navigator
View (Figure 31).

D6.3: Site Acceptance Test Plan

74

Figure 31: Application management resources.

First of all, a new service is created with the name of the sNa file (without the extension). In
our example, it is speed-limit. This service representing the application always contains a
standard set of resources (Table 14).

Table 14: Application management resources

Resource Type Description

autorestart property In case of failure, decides if the
application should be
automatically started again

content property Script file content

EXCEPTION action Deprecated

location property GSP location which can be used if
it makes sense

maxinstances property Number of parallel instances
which should be started

resetOnStop property On Stop, decides if the generated
resources by the application
should be destroyed or kept

START action Starts the application

status state variable Current status of the application:
START/STOP/...

STOP action Stops the application

UNINSTALL action Removes the application

To start the application, simply double click on the START resource. This will launch the start
action, which will run the script.

D6.3: Site Acceptance Test Plan

75

Figure 32: Application start-up.

Figure 32 shows that the application is up and running on the server. The studio can be used
to check if the application has the expected behaviour, by querying the resources. The studio
can also be shut down, since the applications are executed on the gateway.

Reusable components

SensiNact is easily portable to any hardware platform and supports a large number of
protocols that allows its easy integration and reuse in various IoT environments.

SensiNact Studio Web

Presenting the information that is absorbed by the gateway is as important as organizing and
aligning the concepts on the backend of gateway itself.

Thus in order to provide a simple interface to watch over the sensors integrated in the
SensiNact Gateway, each instance of SensiNact offers a mobile-compatible interface that
enables the end user to read the information of the gateway and execute standard device
calls in the platform.

D6.3: Site Acceptance Test Plan

76

Figure 33 StudioWeb initial screen

The initial screen Figure 33 is composed of 3 areas: Navigator, Map and Visualizer, they are
situated on upper-left, right and bottom-left respectively. Navigator is where the available
gateway will be display along with the entire resource hierarchy, meaning displaying the
gateway above all the sensors (known as providers), the sensors with all the services
available and each service with their respective resource, all display in a tree in which the top
most element is the selected gateway.

Within the Navigator area it is possible either add a new gateway using the “+” sign, or
disconnect (and remove) the gateway using the “-” sign, noticing that this function only make
sense if you are connected to one. The connect options can be seen in Figure 34.

This is where the client will input the information about the address of the gateway he/she
wishes to be connected to and the actual port.

D6.3: Site Acceptance Test Plan

77

Figure 34: StudioWeb connect

After a successful connection, you will be able to see the gateway along with the tree of
devices/services/resource attached to the gateway Figure 35.

Figure 35: StudioWeb gateway content

All sensors, known as well as providers, are display on the upper-left part of the interface, if a
specific sensor is selected, the Map area will lead to the geographic position of that sensor (if
that information is available) and all the information of services and resources contained in
that sensor will be display directly on the Map area, see Figure 36.

D6.3: Site Acceptance Test Plan

78

Figure 36 StudioWeb: Sensor data

Once the connection is established with an active gateway, the StudioWeb is receiving
updates notifications from the gateway for the new data, which may include new devices
attached to the platform, disconnected devices or updated sensor data notifications.
According to the capability of the gateway (processing capability) you may be disconnected
in order to preserve the resource consumption on the back-end.

After been disconnect voluntarily from the gateway a message will be display on the upper-
right part of the screen, see Figure 37

Figure 37: StudioWeb gateway disconnection

D6.3: Site Acceptance Test Plan

79

3.3.1.1 Integration of IoT framework

In order to establish a Site Acceptance Test Plan for Eclipse SensiNact platform it is
important to understand how the INTER-IoT platform integration was done through the bridge
implementation.

INTER-IoT Eclipse SensiNact support was done using the Bridge layer, The bridge layer was
conceived to allow external IoT platforms to create a generic adaptation schema designed to
support a large number of architectures, enabling this bridge coordinate and create a pattern
to access the MW2MW component. The bridge layer can be seen below

Figure 38: INTER-IoT: Middleware to Midldeware communication architecture

As seen, the bridge uses mainly the IPSM Request manager to communicate with INTER-
IoT platform. IPSM will instantiate, initialize and receive and retransmit the information sent
by the external supported platforms into the IPSM.

All the bridges are conceived based in an ontological model, this model can be any format
supported by Jena. Although the Jena supports several ontological representation formats,
Jena is only the framework that will encloses the instance of a chosen ontology, this choice
will be done independently by each platform, which means that mainly three approaches can
be followed, either adopt an existing ontology that is the most convenient for the platform

D6.3: Site Acceptance Test Plan

80

targeted domain, adopt Generic Ontology for IoT Platform GOIoTP [https://docs.INTER-
IoT.eu/ontology/owl/GOIoTP.owl] or using a custom ontology.

The Eclipse SensiNact is situated in among other bridges in the Bridge layer, in order to
enable INTER-IoT client to be able to use a supported platform, he must specify some
parameters that will be use by the bridge to give an appropriate data source for the platform
client.

The SensiNact bridge communication was designed according to the sequence diagram
shown in the Figure 40.

Once the bridge is installed in the INTER-IoT platform, the SensiNactBridge constructor is
called by the IPSM; the SensiNact bridge receives its configuration data and allows the
bridge to receive the instantiation configuration info like the endpoint address of SensiNact,
version of SensiNact, the port in which it should be reached and other parameters, all the
options available for the bridge configuration can be seen in https://git.INTER-IoT.eu/INTER-
IoT/INTER-MW_bridge_SensiNact/

At this point the bridge will call a factory Figure 39 that will instantiate the proper
SensiNactAPI according to the parameters sent to the bridge. Until this point the bridge do
not establish any communication with the endpoint sent to the bridge.

Once the INTER-MW receives a platform registration request from the INTER-MW REST API
(represented in the Figure 41) the SensiNactAPI instance will establish the connection with
the WebSocket channels in SensiNact.

Figure 39: SensiNactAPI factory for multiple SensiNact versions

Depending on the version requested on the configuration file, there may be one or two
websocket communication established by the bridge. If the version requested is the version
“v1” (pre-eclipse legacy version), only one WebSocket channel will be opened, case the
version “v2” (current eclipse version) is requested two Websocket channels will be required,
one for the regular data update notification (callback), and the other channel is used to create
virtual device into SensiNact.

D6.3: Site Acceptance Test Plan

81

Figure 40: SensiNact INTER-IoT bridge design

Figure 41: INTER-IoT: Sequence diagram for generic INTER-IoT MW2M bridge activation

Above as we can see, once the bridge is supported in the platform the INTER-IoT client must
perform INTER-IoT REST calls in order to configure, initialize and instantiate his access to
the targeted bridge.

The client first will need to access IPSM RESTful interface in order to create downstream
and upstream communication channels, along with the channel creation, according to the
architectural decision taken by the responsible for the bridge platform the user can as well
specify the alignments that will be necessary for the requested bridge.

D6.3: Site Acceptance Test Plan

82

Once the channels are create in two direction, now the user must specify a Client access for
the RESTful interface that will de facto access the data provided by the bridge.

Thus the Client will now register a client via INTER-MW client, the client register will be used
on further calls to the API in order to represent the properties expressed by the interface
client.

Once the client is registered successfully the next step is to call the procedure on the INTER-
MW that will instantiate the platform for a given client. As input it is necessary for the
RESTful interface client to indicate the ClientID created earlier.

Once those steps were successfully executed, now the user can finally have access to the
data provided by bridge requested by using the proper calls, in order to have more
information about those calls, the REST API documentation must be checked.

3.3.1.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components

2 Validation and Test reports of the Pilot system components

Tools

7 Wireshark

8 CURL

9 Java SDK
Table 15: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

SensiNact

1 Eclipse SensiNact Gateway v2.0
Table 16: Component version overview

3.3.1.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

1 Extensibility (feature evolution) T1.1, T2.1

2 API for third-party developers T1.1, T2.1

3 API REST T3.1, T3.2

4 Open Source T2.1

5 Documentation T1.1
Table 17: Requirements vs. test mapping

D6.3: Site Acceptance Test Plan

83

3.3.1.4 Test environment

Introduction

To test the functionality of the integrated SensiNact in combination with the IoT framework
representative test hooks in the system are needed. This chapter will describe this
environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test setups, hooks and probes used in the system used during
this SAT.

Test tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

Test description

Documentation is available online

The platform documentation MUST be available publicly on the internet regardless of
subscription or particular registering process.

T1 Check documentation available

ID T1.1

Test Verify that the platform documentation is available online on
http://wiki.eclipse.org/SensiNact

Type Manual verification

Setup No particular setup is required

Start System does not need to be started

Req. Not Applicable

Input Not Applicable

Output Check that the documentation is available

Logs Not Applicable

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

84

Source code MUST be available online

The platform source code MUST be available publicly on the internet regardless of
subscription or particular registering process.

T2 Check that the code source is available

ID T2.1

Test Check that it is possible to obtain the source code of the platform

Type Manual verification

Setup No particular setup is required

Start System does not need to be started

Req. Not Applicable

Input Not Applicable

Output Not Applicable

Logs Not Applicable

Outcome Pass / Fail

Check that the platform has a RESTful API

The platform MUST provide a RESTful API to reach its sensors, allowing external developers
to easily use the platform information on their application.

T3.1 Check that the RESTful service is available

ID T3.1

Test Check that it is possible to obtain the source code of the platform

Type Manual verification

Setup  Point your browser to http://projects.eclipse.org/proposals/eclipse-
SensiNact

 Download the code-source
 Compile the code-source
 Activate bridges HTTP, Rest and Swagger

Start Start SensiNact

Req. Not Applicable

Input Not Applicable

Output Reach the interface http://localhost:8080/SensiNact/providers, at list one
provider named “SensiNact” should be seen.

Logs Not Applicable

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

85

T3.1 Check that the swagger interface is available

ID T3.2

Test Check that it is possible to access swagger interface of the platform

Type Manual verification

Setup  Download SensiNact Binary
 Activate bridges HTTP, Rest and Swagger
 Start SensiNact
 Reach the interface http://localhost:8080/swagger/index.html

Start System does not need to be started

Req. Not Applicable

Input Not Applicable

Output Swagger interface should be reachable

Logs Not Applicable

Outcome Pass / Fail

3.3.1.5 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T1.1 Documentation is available online Pass / Fail

T2.1 Source code MUST be available online Pass / Fail

T3.1 Check RESTful service is available Pass / Fail

T3.2 Check Swagger interface is available Pass / Fail

SAT Outcome Pass / Fail
Table 18: Test outcome overview

3.3.1.6 Integration ethics and security

The security, trust and privacy component of SensiNact is in charge of reifying and
maintaining the data structures, holding access rights to existing resources as well their level
of trust according to who is providing them. The main principle to ensure trust and privacy is
first to keep as little private data as possible in the system. It is also to anonymize those that
will be used for analysis. For example, the anonymization starts by breaking the link between
the identifier of the user in the system and the identifier to which analysed data records are
linked to, in manner of preserving all possible statistic calculations but disallowing the simple
association between a data record to a unique person. Whatever the anonymization
mechanisms are, some private data will remain into the system because of their use in the
case of social features. In manner of being compliant with the new European rules relative to
private data known as GDPR, we apply its seven principles in the private data management:

D6.3: Site Acceptance Test Plan

86

 Loyalty and lawfulness of treatment: the processing of data must be carried out for
legitimate reasons and its use must conform to the regulations and transparent.

 Collection of consent: the consent of the individual whose data is collected and
processed must be express, that is, it must result from a positive act. It cannot be the
result of a silence or a checkbox that is checked by default.

 Purpose of treatment: The data that is being processed must be treated for a specific,
explicit and legitimate purpose. This purpose cannot be altered: The data collected for a
treatment cannot be processed for a purpose other than that for which the persons have
given their consent.

 Proportionality: It is only possible to collect data that is adequate, relevant and not
excessive to the purpose of the treatment.

 Data security: The controller has the obligation to undertake all the necessary measures
to ensure the security of the data and to avoid their disclosure to unauthorised third
parties.

 Accuracy of data: the data collected and processed must be accurate. To do this, it is
better to promote a regular update of the data in question. Measures must be put in place
to ensure that inaccurate data is erased or rectified. The most appropriate way to comply
with this principle is to set up an application that allows users to modify their own data.

 Deleting data: The data that is no longer needed should be deleted. The shelf life is
variable and depends on the nature of the data and the purposes pursued.

Figure 42: Securing private data

In particular to respect the data security principle, we use the same model that we use for
city entities: we reify an instance of the SensiNact inner system’s service model to host the
private data, only accessible by the user. It means that sharing personal data result only in
an explicit sharing request coming from the user itself.

Permission to use a service is required in order to access resources regarding the service.
Untrusted clients should not be able to use the services, event not aware of their presence.
The resource access layer defines service permissions in such a way that access to the ones
it provides is forbidden except if a specific condition is met (a specific conditional

CER

Device
Bridge

DB

VALIDATOR

Registry

…

…

G S A S/U

Instance
CORE

Proxy

…

…

G S/U

User
Bridge

…

…

G S A S/U

Instance

G S A S/U

Proxy

…

…

D6.3: Site Acceptance Test Plan

87

permission). The condition is that the client is an instance of “Secured Access Service”. The
clients can be one of the following five profiles:

 Owner,
 Administrator,
 Authenticated,
 Anonymous,
 Unauthorized.

A UserProfile can be defined at each level of the hierarchical resource
model: ServiceProvider, Service, and Resource.

When asking for a data structure of the resource model, the access rights of the user are
retrieved; the set of this user's accessible access methods for the specific data structure is
built and returned as part of the description object. Each future potential interaction of the
user on the data structure will be made by the way of this description object. For a remote
access, a security token is also generated and transmitted to the user, to avoid repeating the
security policy processing. A token is defined for a user and a data structure (and so it
previously created description object).

Implementation

Two levels of security are implemented. A first security level handled by the underlying
service framework that hosts the SensiNact platform, which is the OSGI security framework,
to secure installation and activation of software modules. The second security level tackles
the user accesses to registered resources with respect to authentication (login/password
authentication) and thus is provided as a service to the application layer.

OSGi2 Framework which provides a first level of with its
ServicePermission and ConditionalPermissionAdmin services. The ServicePermission is a
module's authority to register or use a service:

 The register action allows a module to register a service on the specified names.
 The get action allows a module to detect a service and use it.

Permission to use a service is required in order to detect events regarding the service.
Untrusted modules should not be able to detect the presence of certain services unless they
have the appropriate ServicePermission to use the specific one.
The ConditionalPermissionAdmin is framework service to administer conditional permissions
that can be added to, retrieved from, and removed from the framework.

In addition to the database managed by the Security & Dependability functional block, used
to authenticate a user and to retrieve its identity in the system, the SensiNact platform
manages an internal database allowing to link this identity to a UserProfile for a specific data
structure. For all data structures for which the user has not been registered the Anonymous
user profile is used by default (except if the owner of a resource has defined this default
profile to another one). The internal database also gathers information relative to the
minimum required UserProfile to access to data structures. This definition can be made at
each level of the resource model, knowing that if no UserProfile is defined for a data
structure, the one specified for its parent is used.

2 https://www.osgi.org/

D6.3: Site Acceptance Test Plan

88

For example, according to the figure below, a user trying to access to
the ServiceProviderX for which its UserProfile is Anonymous will receive a description object
in which only one Service will be referenced (ServiceX1), containing a single Resource
(ResourceX1S2) providing two AccessMethods: GET and SUBSCRIBE.

Figure 43: Example of security inheritance of service provider

More details about the implementation of the security mechanism implemented for the City
resource access layer (aka SensiNact platform) can be found at:
https://wiki.eclipse.org/SensiNact/Gateway_Security

D6.3: Site Acceptance Test Plan

89

 Third Party: OM2M

The system under test has four main components (see figure 1):

 the Middleware to Middleware (MW2MW) layer, which includes our bridge,
 the Inter-Platform Semantic Mediator (IPSM), which includes our new alignments),
 the Eclipse open source platform called Open Machine To Machine (OM2M)
 the Sensolus company’s cloud, to which four “stickntrack” tracers are connected.

MW2MW or Middleware to Middleware, also called INTER-MW (inter-middleware) is the
layer with which any IoT platform can communicate, provided a bridge is available for that
platform type. The OM2M Bridge is our contribution to MW2MW. The Java interface,
between the OM2MBridge class and the MWM2W layer, allows for the creation of any
number of bridges connected to different OM2M platforms and allows the selection of the
right bridge when sending a message to a particular platform.

The IPSM or Inter-Platform Semantic Mediator is a translation block able to modify the
payloads of messages from MW2MW according to a so-called alignment to make them
understandable for the platform they need to reach or for the MW2MW layer itself. The
alignments developed in this large open call project are between the Generic Ontology for
IoT Platforms (GOIoTP), being the central ontology developed for the INTER-IoT project by
SRIPAS and a pseudo ontology based on XML (and oBIX for content instances) format of
OM2M resources.

OM2M or Open Machine to Machine is an Eclipse open source project aiming at developing
an implementation of the oneM2M standard. The core of the platform is the Common Service
Layer that allows any node to be able to reach any other node or application via multiple
protocol bindings (Hyper Text Transfer Protocol (HTTP), Constrained Application Protocol
(CoAP), Message Queueing Telemetry Transport (MQTT) protocol or via specialized proxies.
The functions of the Service layer are represented by resources accessed through Uniform
Resource Identifiers (URIs). The actual data exchanged between the applications and nodes
can take any format. The version of OM2M used for our tests largely corresponds to the main
branch of OM2M.

Sensolus is a company providing Sigfox enabled tracers that can be easily attached to any
asset that needs to be localized. The data from registered tracers can be accessed through
their cloud via Application Programmer Interface (API) calls. An Interworking Proxy Entity
(IPE) has been added in our OM2M platform to retrieve the location data regularly and copy
it in the OM2M Infrastructure Node.

The tested interfaces are:

-The “MW2MW to IPSM” interface, for the selection of the right alignment needed for the
semantic translation of the messages. The IPSM can maintain channels capable of
performing translation between two supported ontologies. Once the alignments “OM2M to
GOIoTP” and “GOIoTP to OM2M” are uploaded, the MW2MW layer must be able to request
the IPSM to translate the message payloads (if relevant for the message type) automatically.

- the “MW2MW to bridge” interface: once an instance is created to communicate with a given
platform, outgoing messages destined for that platform must be routed through the bridge
seamlessly for mapping the message to OM2M requests and for doing syntactic translation.

D6.3: Site Acceptance Test Plan

90

- The “bridge to OM2M” interface: an HTTP client and server handle all requests and
responses, in both direction. Those components and the underlying protocol layers needed
to connect the physical devices running OM2M and MW2MW must keep functioning
correctly. The bridge also reports this type of errors differently from syntactic or semantic
errors.

Figure 44: system overview

Integration of IoT framework

The integration in the pilots consist in the tracing of valuable assets in the port of Valencia
thanks to the Sigfox-based tracers. Those tracers push their position to the cloud platform of
the company Sensolus (later referred to simply as “Sensolus cloud”), which provides an API
for data collection. That API is used by a server located in the Vrije Universiteit Brussel
acting as Infrastructure Node of a oneM2M platform, which in turn makes some of its
resources accessible through an Inter-Middleware bridge.

IoT component Interfaces tests

“Strickntrack” tracers Sigfox connectivity OK

Sensolus cloud Proprietary API

T1.1.1

OM2M Infrastructure node Proxy for Sensolus cloud T1.1.1

HTTP server/client T1.1.1, T1.1.2

OM2M Bridge in MW2MW HTTP server/client T1.1.1, T1.1.2

Java interface T1.1.1, T1.1.2

MW2MW layer Java interface T1.1.1, T1.1.2

REST API T1.1.1, T1.1.2
Table 1: tested components and interfaces

D6.3: Site Acceptance Test Plan

91

3.3.2.1 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components

2 Validation and Test reports of the Pilot system components

3

Hardware

4 Sensolus stickntracks

5 Server

6

Tools

7 Wireshark

8

9
Table 2: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0.0 consists of.

ID Description Version Check

IoT back-end server

1 INTER-MW layer V1.7.0

2 Inter Platform Semantic Mediator (IPSM)

3 OM2M Infrastructure Node CSE V1.1.0
Table 3: Component version overview

3.3.2.2 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

4 Alignment with other IoT architectures, especially with AIOTI T1.1.1, T1.1.2

14 Platform independency T1.1.1

15 Support of common IoT communication protocols T1.1.1

16 Inter-connection support T1.1.1

26 Remote device control T1.1.1

42 Heterogeneous information representation T1.1.1

45 Connectivity not based on HW identifiers T1.1.1

51 API for data publication T1.1.1

52 API REST T1.1.1, T1.1.2

53 Location of sensor and measurement is included in semantic
models

T1.1.1

127 Availability of sensor data T1.1.1

154 Time stamped event recording T1.1.1

178 Inter Platform Semantic Mediator provides data and semantic
interoperability functionality

T1.1.1, T1.1.2

D6.3: Site Acceptance Test Plan

92

179 Inter Platform Semantic Mediator supports platform
communication

T1.1.1, T1.1.2

180 Syntactic and semantics interoperability - Data format and
semantics translation

T1.1.1, T1.1.2

183 IoT Platform Semantic Mediator does not store sensor data T1.1.1

194 Provide exchange of virtual objects between platforms T1.1.1

201 Monitoring and provision of subscription services between
different platforms

T1.1.1

220 Ontology mapping among most prominent standards T1.1.1, T1.1.2

224 Location semantic support for mobile smart objects T1.1.1

234 Provide connectors to middleware standards T1.1.1

237 API Middleware for interoperability between different platforms T1.1.1, T1.1.2

238 Virtualization of common objects in middleware layer T1.1.1

242 Object/Device virtualization T1.1.1

254 Each data unit is identified univocally T1.1.1

255 A common data model compatible with all platform-specific
models is shared

T1.1.1

256 Each device has a unique INTER-IoT identifier T1.1.1, T1.1.2

270 API allows subscription to data streams/queues T1.1.1

272 Stores recent data for recovery T1.1.1

283 Manage a sensor or actuator T1.1.1
Table 4: Requirements vs. test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

5 Monitoring of containers carrying sensitive goods T1.1.1

33 Heterogeneous Platforms Methodology-driven Integration T1.1.1, T1.1.2
Table 5: Scenario vs test mapping

3.3.2.3 Test environment

Introduction

To test the functionality of the integrated Inter-OM2M in combination with the IoT framework
representative test hooks in the system are needed. This chapter will describe this
environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test setups, hooks and probes used in the system used during
this SAT.

Test tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

D6.3: Site Acceptance Test Plan

93

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Asset Tracing test setup

The necessary components for this test setup are:

- A general purpose computer running the INTER-MW software. This software must
include the OM2M bridge and both alignments related to that platform, namely
“GOIoTP to OM2M” and “OM2M to GOIoTP”. It must be connected to the Internet to
communicate with the OM2M server of VUB (also called Infrastructure Node or IN),
reachable through the URL “https://onem2m.duckdns.org”. The OM2M bridge must
be configured to use the right credentials to access the server with https basic
authentication.

- At least one Sensolus tracer with a running Sensolus subscription. It must be used in
an area within Sigfox coverage.

The tracers are registered in the OM2M Infrastructure Node, which already has a container
per device to store incoming location data. The custom Interworking Proxy Entity retrieves
that data from the Sensolus cloud every 15 min and converts it to oBIX format for storage on
the Infrastructure Node. An Access Control Policy (ACP) resource including a rule for the
bridge resource with permission to retrieve and create is already present in the Infrastructure
Node (IN), and the containers of the trackers include it in their Access Control Policy
Identifiers (ACPI).

The MW2MW layer is not yet connected to the OM2M platform. A client has been created
with sufficient access rights to retrieve data via queries and create subscriptions.

TT_01 Test tool x

Test tools are not included in this setup.

TH_01 Test hook x

Test hooks are not included in this setup.

TP_01 Test probe 1

The bridge copies in its log the “protocol-less” request and response primitives exchanged
with the OM2M platform, as well as the first observation message send from the bridge to the
INTER-MW layer (or rather the Junit test playing its role) after a notification from the platform
is received.

D6.3: Site Acceptance Test Plan

94

3.3.2.4 Test description

Scenario 1

This scenario focuses on the retrieval of the location of a device. This can be achieved either
using a “query” message from the MW2MW layer or by subscribing to the device. In both
case, the message with the location data coming from the OM2M will be syntactically and
semantically translated to comply with the Generic Ontology for Internet of Things Platforms
(GOIoTP). At that point, it could be sent further to any other supported platform, but this test
will not focus on that part.

Due to the limitation present in the 868MHz band, that Sigfox uses, the tracers publish their
position each 15 minutes, and additional data cannot be requested from the devices. The
query messages retrieve the last available content instance in the virtual device
corresponding to the tracker of interest. The location data acquisition by the tracers is not
guaranteed to work in a closed environment, so it is advised to place them outside for the
test. The latitude and longitudes of the positions of the tracers should be known to validate
the correctness of the observations.

Registration

The INTER-MW layer needs to register to the VUB oneM2M server (called the Infrastructure
Node), before any other message can be sent through the bridge.

The error messages encountered when sending the Platform_register message are the
following:

“Failed to create(/register as) Application Entity for the bridge, status code:”

Followed by an oneM2M status code, which are listed in the oneM2M standard (TS004,
section 6.6).

Check that the oneM2M Infrastructure node can be reached by using the web interface.

At this point, the INTER-MW log should be checked for the errors:

“Error: No URI list in response” or “Error: No ACP found for the bridge”

That error will not stop the program right away and registration will succeed, but further
interaction with oneM2M resources will fail. The errors both mean the Access Control Policy
(ACP) required for the bridge to communicate with oneM2M is not present or cannot be
found in the oneM2M Infrastructure node. That ACP must include in its Privilege attribute a
rule for the Identifiers of the bridge (f.i. /in-cse/in-name/ae_iiot_bridge and in-
name/ae_iiot_bridge) the full access, meaning the possibility to create, retrieve, update and
delete oneM2M (acop value of 63 or 31) resources.

<pv>
 <acr>
 <acor>/in-cse/in-name/ae_iiot_bridge in-name/ae_iiot_bridge</acor>
 <acop>63</acop>
 </acr>
</pv>

The presence of that ACP resource can be checked directly in the web interface of the
oneM2M Infrastructure Node at https:// onem2m.duckdns.org/webpage.

Subscritpion

D6.3: Site Acceptance Test Plan

95

A Subscribe message only contains the URI of the Container one wishes to subscribe to, for
instance: http://onem2m.duckdns.org/in-cse/in-name/DEVICE_0/LOCATION_DATA
(hierarchical identifier) of http://onem2m.duckdns.org/in-cse/cnt-1234567 (non-hierarchical
identifier). Note that INTER-MW only uses HTTP URI although the connection to the IN
actually uses HTTPS (this is normal and the bridge will use whatever is defined by the
“protocol” property).

Error message encountered at the creation of a subscription:

“Failed to create 1 of the 1 subscriptions”

The INTER-MW log will contain this line for each of the failed subscriptions (in this case 1):

“Failed to create subscription to device: %EntityId% with status code: %StatusCode%”

If the status code is equal to 4005 (Operation not allowed) check if the oneM2M resource you
try to subscribe to includes the bridge ACP. The non-hierarchical ID of /in-cse/in-
name/acp_iiot_bridge (<ri> attribute) should appear in the <acpid> attribute of the resource,
as shown on Figure 1.

If the status code is 5204, check in the INTER-MW log if the bridge was able to start a jetty
server (error: Unable to start jetty server, error: …). This can be caused by the Operating
System of the computer where INTER-MW is running. If the server is running, check the
properties of the bridge, if the callBackURL property is followed by your computer public IP
address.

Figure 45: Container resource (right) including an ACP resource (left)

Retrieval of location data

The location of a sensor appears in a RDF graph in the form:

%DeviceId% <iiot:hasLocation> A
A <rdf:type> sosa:Result
A <rdf:type> iiot:Location
A <geosparql:asWKT> point[%latitude%, %longitude%]

That structure is the same if one pulls the location with a Query message or is notified of a
new value for a subscribed-to device.

D6.3: Site Acceptance Test Plan

96

One type of error can occur when retrieving observation with a “Query” message or receiving
an observation after having subscribed to a device (i.e. oneM2M Container resource):

“Failed to translate retrieved content instance to rdf”

The Syntactic Translator of the bridge only for resources serialized in xml (this is hard-coded,
should not be an issue) and, if that resource is a Content Instance, its content needs to be
plain text or oBIX (check the Content Info or <cnf> attribute of the Content Instance).

Another possible error message specific to responses to a Query message is:

“Failed to retrieve content instance %ContentInstanceId% status code: %StatusCode%

If the status is 4004 (not found), check if the container exists in the oneM2M Infrastructure
Node. If that container has no Content Instance, this behavior is normal as the oneM2M
request targets the last Content Instance of the Container, in this case nothing.

Creation of Devices

The Message with type “Platform_Create_Device” need to go through IPSM for GOIoTP to
oneM2M semantic translation before being passed to the bridge. This step can fail if IPSM is
not running, if the kafka message broker fails to deliver the message to IPSM or if the IPSM
channel for downstream messages to oneM2M has not been properly initialized. For the two
first errors, check the IPSM and kafka logs, respectively. The channel should be created
automatically when INTER-MW loads all the bridge classes, which will be mentioned in the
INTER-MW log:

“Upstream IPSM channel for platform http://onem2m.duckdns.org has been created
successfully.”

“Downstream IPSM channel for platform http://onem2m.duckdns.org has been created
successfully.”

Please note that the new Container will not necessary appear in oneM2M with the URI
mentioned in the INTER-MW message. This is due to the fact oneM2M imposes the (non-
hierarchical) identifier of new resources. This should not have a negative effect on using the
device Id later on because the bridge will store it in a map.

Sending a large number of Platform_Create_Device messages (see next section) should not
cause issues in the INTER-MW to IPSM interface as Kafka is built to scale efficiently, but the
semantic and syntactic translation of the messages can introduce delays.

D6.3: Site Acceptance Test Plan

97

Use case 1

T1.1.1 Location of tracers

ID T1.1.1

Test Retrieval of location data through the INTER-MW API

Type System testing

Setup TS_01

Start The OM2M platform is paired to the tracers

Req. 4 ,14,15, 16, 26, 42, 45, 51, 52, 53, 127, 154, 167, 178, 179, 180, 183, 194,
201, 220, 224, 234, 237, 238, 242, 254, 255, 256, 270, 272, 283

Input Send a “platform register” message through the INTER-MW REST API.
Send a “query” message” through the INTER-MW REST API with destination
the full hierarchical Id of the container of a tracker.
Send a “subscribe” message” through the INTER-MW REST API with
destination the full hierarchical Id of the container of a tracker.

Output Check the creation of an Application Entity (AE) resource representing the
bridge inside the Infrastructure Node.
Check the OM2M primitive response sent to the bridge after the query: a
Content Instance with oBIX content, and the corresponding data received in the
INTER-MW REST API: a jsonLD text containing a Well Known Text (WKT)
representation of the location data.
Check the creation of a OM2M subscription as a child resource of the Container
of interest

Logs INTER-MW.log

Outcome Pass / Fail

T1.1.2 Fast device creation

ID T1.1.2

Test Creation of large number of oneM2M container in a short period of time

Type System testing/ stress testing

Setup TS_01

Start The OM2M platform is register within INTER-MW

Req. 4, 53, 178, 179, 180, 220, 237, 256

Input Use the INTER-MW layer to create 10 new devices per second for 20 seconds,
with “Platform_Create_Device” messages in an already registered OM2M
Infrastructure Node.

Output 200 new Container should appear as child resources of the bridge’s Application
Entity within the OM2M Infrastructure Node.
The translation of 200 messages should appear in the IPSM log, since the
payload of Platform_Create_Device is intended for the platform (not for the
bridge itself).

Logs INTER-MW.log, ipsm.log

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

98

3.3.2.5 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T1.1.1 Location of tracers Pass / Fail

T1.1.2 Fast creation of devices Pass / Fail

SAT Outcome Pass / Fail
Table 6: Test outcome overview

3.3.2.6 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

Inter-OM2M

Our research team is not collecting sensitive data related to people such that we are not
under the law of the protection of the privacy of individuals.

D6.3: Site Acceptance Test Plan

99

 Third Party: INTER-HARE

The INTER-HARE project is intended to design a new LPWAN technology flexible enough to
transparently encompass both LPWAN devices and multiple so-called low-power local area
networks (LPLANs) while ensuring overall system’s reliability. A cluster-tree network (Varga,
2015) is created, where the LPWAN acts not only as data collector, but also as backhaul
network for several LPLANs, as shown in Figure 46.

Figure 46: INTER-HARE transport network

Communication within the LPWAN is based on the HARE protocol stack (Adame,
Barrachina, Bellalta, & Bel, 2018), ensuring transmission reliability, low energy consumption
by adopting uplink multi-hop communication, self-organization, and resilience. Under these
premises, LPWAN boundaries are extended beyond typical 868 MHz coverage range and
easily integrate devices coming from adjacent/overlapping 2.4 GHz LPLANs. Use of
separated frequency bands in overlapping networks results in an overall reduction of
interferences. Lastly, thanks to the hierarchic system proposed, scalability is enforced by a
management based on sub-networking techniques.

General considerations

The INTER-HARE platform is conceived as an innovative evolution of HARE protocol stack
and can be considered as a dynamic multiprotocol. As it can be seen in Figure 47: Example
of INTER-HARE transport network, in INTER-HARE, the INTER-IoT gateway (GW) and the
cluster-heads (CH) of each LPLAN share the same protocol stack operating at 868 MHz and,
at the same time, these CHs and the corresponding data acquisition devices (DADs) also
share the same protocol stack, in this case operating at 2.4 GHz.

The INTER-HARE transport network conceives end devices as elements controlled by the
GW by means of beacons, so that these are first received by CHs and then immediately
retransmitted at a different frequency band in order to be listened by DADs. This centralized
approach allows DADs to remain asleep the majority of the time, so that their single concern
is to be awake enough in advance to listen to the next beacon. Network synchronization is
thus achieved and allows the GW to ask for specific data and/or distribute configuration
changes easily.

D6.3: Site Acceptance Test Plan

100

Figure 47: Example of INTER-HARE transport network

The GW is considered to be appropriately placed close to a power source or an energy
harvesting solution. Therefore, it may always stay in an active state and is provided with the
ability to directly communicate (i.e., via single-hop communications) with any CH of the
network through unicast and/or broadcast messages as well as to redirect gathered data to
other networks or the Internet.

Conversely, CHs can take advantage of their neighbours to create multi-hop paths over
which data is transmitted to the GW by means of lower transmission power levels.
Depending on their position within these paths, CHs of the LPWAN are ideally organized into
rings, as shown in Figure 48: Ring structure of the LPWAN. The number of hops to reach the
GW determines the ring number (i.e., CHs from ring 2 need two hops to reach the GW).

Figure 48: Ring structure of the LPWAN

Each uplink data transmission phase (consisting of one or more transmission windows)
begins with a beacon signal from the GW. Transmission windows are in turn virtually split

D6.3: Site Acceptance Test Plan

101

into as many TDMA slots as network rings, so that CHs are only active during their own slot
(for transmitting data) and the previous one belonging to their children3 (for receiving data).

The first slot is allocated to the highest ring and the rest are scheduled consecutively. Data
received by CHs is aggregated to that generated by themselves (i.e., data previously
received from DADs of their LPLAN), and finally sent to the corresponding parent at the
minimum power level which ensures reliable communications. This process is repeated as
many times as rings the network has.

The correct reception of data transmissions at the GW is acknowledged with a broadcast
message, so that CHs are not only aware of their own end-to-end reliability, but also of those
CHs in the same path to the GW. These acknowledgment beacons, together with the
information obtained from their adjacent nodes, allow CHs to decide whether they should
remain awake to perform retransmissions of lost network packets.

Network association (also started by a beacon) remains stable until a change in the topology
is detected or the mechanism is reset by the GW. Nevertheless, the agreed transmission
power between adjacent nodes in the association phase is constantly monitored and
adjusted in a decentralized way in order to reduce the energy consumption.

Architecture

The architecture of the INTER-HARE platform can be split into two networks with different
purposes: the transport network and the integration network (as it can be seen in Figure 49:
Proposed architecture for the SAT tests).

Figure 49: Proposed architecture for the SAT tests

 3 Children refers to all CHs of an adjacent higher ring from which a CH receives packets. Similarly, parent refers to that CH from an adjacent
lower ring to which a CH transmits its own packets (after aggregating the ones from its children) in its way to the GW.

D6.3: Site Acceptance Test Plan

102

Transport network

It involves all internal infrastructures responsible for gathering and transporting information
from the end-devices to the physical gateway. There are up to 3 different elements in the
transport network:

 Gateway (GW)

This device is responsible for controlling the two-tier cluster-tree network, gathering all
the collected information, and transmitting this information via serial to the Raspberry Pi
3B+4, which in turn acts as the main element of the integration network. The device
selected to perform this function is a Zolertia RE-Mote (revision B) working at 868 MHz
frequency band. For more information, we address the reader to check its datasheet
(Zolertia, 2016).

 Cluster-head (CH)
Cluster-heads are entitled by the INTER-IoT gateway to manage their corresponding
LPLAN in a hierarchic way. They are the only elements with a multiband radio module
(working at 868 MHz and 2.4 GHz), so that they gathered the information transmitted by
data acquisition devices of their own LPLAN at 2.4 GHz and retransmit it to the INTER-
IoT gateway (or alternatively, to the closest relay device) at 868 MHz through the
LPWAN. In this case, the device selected to perform the role of cluster-head is obtained
from the serial connection of 2 Zolertia RE-Mote, one working at 868 MHz frequency
band (acting as master) and the other one at 2.4 GHz frequency band (acting as slave).

 Data acquisition device (DAD)
Data acquisition devices are those elements deployed directly on the area where one or
more environmental variables must be monitored. In the current project, the selected data
acquisition device is a Zolertia RE-Mote only working in its 2.4 GHz frequency band.

Integration network

It is responsible for ensuring the communication between the physical gateway and the rest
of the INTER-IoT system (or more specifically, with the virtual gateway), as shown in Figure
50: Structure of the integration INTER-HARE platform in INTER-IoT project.

Consequently, it is redefined the INTER-IoT gateway, which is considered the brain of the
INTER-HARE platform and the single point of contact between the physical network and the
rest of the INTER-IoT system. Due to its dual conception, it is easy to split its internal
architecture into:

 Physical gateway

A combination of a wireless frontend (responsible for the communication with the rest of
the transport network) and a controller (responsible for the communication with the virtual
gateway). Both elements are connected through a serial link. While the wireless frontend
is a Zolertia RE-Mote, as explained in Section 0 Transport network, the controller is an
OSGi bundle executed by the Raspberry Pi 3B+.

 Virtual gateway
A virtual entity which can be executed in a remote location, based in the Docker platform;
i.e., a virtual container that provides an additional layer of abstraction and automation of
operating-system-level virtualization on Windows and Linux.

4 Raspberry Pi main website - https://www.raspberrypi.org/

D6.3: Site Acceptance Test Plan

103

Figure 50: Structure of the integration INTER-HARE platform in INTER-IoT project

3.3.3.1 Integration of IoT framework

The architecture of the integration network is closely related to that of the employed gateway.
In the specific case of the INTER-HARE platform, and according to the options presented in
deliverable D3.1. Methods for Interoperability and Integration, the gateway element has
been split into two parts: “the physical part for the embedded device and the part that can be
executed in a virtual container”.

Figure 51: Generic gateway architecture of the INTER-IoT project

D6.3: Site Acceptance Test Plan

104

A clear definition of this architecture can be observed in Figure 51: Generic gateway
architecture of the INTER-IoT project, where the two parts of the gateway (the physical and
the virtual) are clearly defined. In the INTER-HARE platform, the elements performing each
role are defined as follows:

Physical gateway: A combination of a wireless frontend (responsible for the communication
with the rest of the transport network) and a controller (responsible for the communication
with the virtual gateway). Both elements are connected through a serial link.

Figure 52: Detail of the elements composing the physical gateway

The physical gateway is made up of the elements shown in Figure 52: Detail of the elements
composing the physical gateway. As for its implementation in the INTER-HARE platform, a
Zolertia RE-Mote will act as a wireless frontend responsible for gathering all the wireless
information transmitted to the gateway at 868 MHz. The rest of elements (the access network
module, the protocol modules and others) are embedded in a Raspberry Pi 3B+ board5.

Figure 53: Internal structure of the INTER-HARE device controller

The device controller extension developed by UPF is an OSGi bundle integrated in the
physical gateway infrastructure. It first instantiates an Activator, created by the class serial, in
charge of receiving and processing the information from the serial-bus connection. This serial

5 Preliminary development and tests in a computer are considered before using the Raspberry Pi 3B+ board.

P
H

Y
 G

W
 C

O
N

F
IG

U
R

A
T

IO
N

D
E

V
IC

E
 M

A
N

A
G

E
R

D6.3: Site Acceptance Test Plan

105

class recognizes the orders sent from the INTER-HARE transport network and creates new
device controllers depending on the type of device. Once registered, these devices are able
to send their gathered information to the virtual gateway.

Virtual gateway: A virtual entity which can be executed in a remote location, based in the
Docker6 platform; i.e., a virtual container that provides an additional layer of abstraction and
automation of operating-system-level virtualization on Windows and Linux.

This element is originally intended to be run in a remote location and controlled by the
INTER-IoT consortium together with virtual gateways from other technologies. Because
the virtual gateway is implemented as a Docker container, it can be also deployed in a
physical location for testing purposes.

According to the classification of the different ways to connect to IoT sensors and actuators
included in subsection 4.2.1. from deliverable D3.2. Methods for Interoperability and
Integration v.2, the INTER-HARE platform uses the second approach:

“At the middle level the dedicated sensors and actuators can connect, these are the COTS
IoT devices. Usually these sensors and actuators have some dedicated communication
protocol between the wireless sensor and some piece of electronics with a small processing
core. They are capable of handling their own access controller and protocol controller and
can be connected through a dedicated extension module implementing a Device Controller”.

The physical and virtual gateway implementations share a common base and runtime code.
Both are based in an OSGi framework wrapper (the OSGi framework has to be R4
compliant) with a customized bootstrap and initiation routines. This framework first loads the
third party libraries, then the core components and afterwards the extension modules. Then a
routine to initiation all the modules starts, and the Physical and Virtual Core take the main
thread to control the gateway. In Figure 54: Physical gateway components and Figure 55:
Virtual gateway components a schema and a summary of the OSGi Framework, wrapper
and components is shown.

Figure 54: Physical gateway components

6 Docker main website - https://www.docker.com/

D6.3: Site Acceptance Test Plan

106

Figure 55: Virtual gateway components

In the INTER-IoT device-to-device interoperability gateway there are four different APIs:
 Gateway CLI: The gateway console extension provides a Command-Line Interface (CLI)

to control the physical or virtual gateway instance.
 Gateway REST API module: REST API exposed by the virtual gateway API Engine

extension module to interact with the virtual and physical gateway.
 Physical/Virtual Communication API: Messages exchanged between the physical and

virtual through the connector module.
 Programmatic API: Libraries and interfaces needed to develop new extension modules

for the gateway.

Communication protocols

The communication inside the INTER-HARE integration network is able to properly transmit
data from the wireless frontend of the physical gateway to the virtual gateway, and vice
versa. According to the aforementioned architecture, communication involves the following
elements:

 Physical gateway
o Wireless frontend
o Access network module

 Virtual gateway

Consequently, two different communication protocols must be defined; one within the
physical gateway (between the wireless frontend and the access network module), and
another one between the access network module of the physical gateway and the virtual
gateway.

Both communication protocols have been first tested in an on-premises integration network,
where all the elements except from the wireless frontend are virtualized and run in a laptop,
as shown in Figure 56: Diagram of the on-premises integration network (used for testing
purposes). Note the presence of a Java application, which receives data from the wireless
frontend and (in combination with a simplified Docker version of the INTER-IoT physical
gateway) delivers it to the virtual gateway.

D6.3: Site Acceptance Test Plan

107

Figure 56: Diagram of the on-premises integration network (used for testing purposes)

Once validated the on-premises approach, the proposed final integration network runs the
INTER-IoT virtual gateway in a server of a remote location, connected through Internet to the
INTER-HARE physical gateway (see Figure 57: Diagram of the final integration network). In
the latter case, while the wireless frontend is still operated by the Zolertia RE-Mote, the
laptop is replaced by a Raspberry Pi 3B+ containing all the necessary software to act as a
real access network module.

Figure 57: Diagram of the final integration network

Communication inside the physical gateway

Communication between the Raspberry Pi 3B+ (or the laptop in the first stage of the
integration) and the Zolertia RE-Mote is based on a serial connection over USB. Data is thus
easily transmitted and information flow can be controlled by means of simple commands.

Both devices are always running a routine listening to the USB port, so that whenever a new
transmission is detected, the device acts according to the frame codification.

Communication between the physical and the virtual gateway

Between the physical and virtual parts of the gateway there is a communication protocol
consisting in a JSON message exchanged through a WebSocket connector, as defined in
subsection 4.2.4.3 from deliverable D3.2. Methods for Interoperability and Integration v.2.
This system allows to have different implementations of physical gateways (i.e., more
flexibility and implementation options) if the communication fits with the reference
implementation for a given version.

The specification of the communication protocol between the physical and virtual part of the
gateway can be found in the following Wiki page of the INTER-IoT project.7

7 https://git.INTER-IoT.eu/INTER-IoT/gateway-extensions/wiki/Home (authentication required)

D6.3: Site Acceptance Test Plan

108

Transmission scheduling mode

The two communication protocols defined in subsection 0 follow different transmission
scheduling modes. While the communication inside the physical gateway is asynchronous
(i.e., information is retransmitted once it has been received), the communication between the
physical and the virtual gateway can follow synchronous or asynchronous patterns
depending on the information criticality.

Raspberry Pi 3B+ Zolertia RE-Mote Transmission
scheduling mode

Any transmission Asynchronous

Table 19: Transmission scheduling mode in the communication in physical gateway

Virtual gateway Raspberry Pi 3B+ Transmission

scheduling mode

System management Asynchronous

Data requests

Virtual gateway Raspberry Pi 3B+ Transmission

scheduling mode

Data transmission
(continuous, query-driven, and event-driven

data delivery models)

Synchronous

Statistics transmission
(continuous data delivery model)

System management Asynchronous

System alarms

Table 20: Transmission scheduling modes between physical and virtual gateway

IoT framework components

The purpose of this subsection is to depict the different IoT framework components (and their
interfaces) to be integrated in the pilot.

Network Component Interface Test code

Transport Gateway (GW) Wireless frontend (868 MHz) T4.46.1, T4.60.1, T4.60,7,

T4.61.1, T4.62.3

Cluster-head (CH) 868 MHz frequency band T4.46.1, T4.60.1, T4.60,7,

T4.61.1, T4.62.3

2.4 GHz frequency band T4.46.1, T4.60.2, T4.60,7,

T4.61.1, T4.62.3

Data acquisition device (DAD) 2.4 GHz frequency band T4.46.1, T4.60.2, T4.60,7,
T4.61.1, T4.62.3

Integration Physical gateway Controller T4.46.1, T4.60,7, T4.61.1,
T4.62.3

Virtual gateway - T4.46.1, T4.60,7, T4.61.1,
T4.62.3

API - T4.19.1, T4.61.1

Table 21: IoT components used in the SAT tests

D6.3: Site Acceptance Test Plan

109

3.3.3.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components

2 Validation and Test reports of the Pilot system components

3 SAT document

Hardware

4 Zolertia RE-Mote

5 Raspberry Pi 3B+

6 DHT22 temperature and humidity sensor

7 Grove luminance sensor

Tools

8 Java viewer tool 1.0

9 Development and demonstration environments setup (in Microsoft Azure Cloud)

10 INTER-FW portal
Table 22: Deliverable checklist

The following table shows the software components and version of which the system release
version consists of.

ID Description Version Check

IoT Data Acquisition Device

1 INTER-HARE System - Data Acquistion Device Firmware V2.0

IoT Cluster Head

2 INTER-HARE System - Cluster Head Firmware V2.0

IoT Relay

3 INTER-HARE System - Relay Firmware V2.0

IoT Physical Gateway

4 AN Controller V2.0

5 Protocol Controller V2.0

6 INTER-HARE System - Gateway Firmware V2.0

IoT Virtual Gateway

7 Fiware V4.2.3

8 Virtual gateway docker V0.3.0

UniversAAL container

7 UniversAAL REST API V3.2.1
Table 23: Component version overview

3.3.3.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered Test code

Architecture

2 Scalability. Design YES T4.60.1, T4.60.2, T4.60.7,
T4.62.3

6 Efficiency of the processing of information YES T4.60.7, T4.62.3, T4.46.1

D6.3: Site Acceptance Test Plan

110

9 Multi-level data processing support YES T4.60.7, T4.62.3, T4.46.1

Communications

7 Support of opportunistic communications to
avoid data loss

YES T4.46.1

14 Platform independent YES

T4.60.7

15 Common IoT communication protocols must be
supported.

YES T4.62.3

17 Dynamic network support YES T4.60.7, T4.46.1, T4.61.1

18 Roaming across networks YES T4.46.1

39 Gateway capabilities YES T4.60.1

45 Connectivity not based on HW identifiers YES T4.60.7

80 Support multicast communication among
devices

YES T4.62.3, T4.19.1, T4.61.1

153 System cache in gateways and upper levels YES T4.62.3, T4.46.1

232 Fault tolerance YES T4.62.3, T4.46.1

233 Flow control and network information tracking YES T4.62.3, T4.46.1

Functionality

11 Addressability and reachability YES T4.60.7, T4.62.3, T4.46.1,
T4.19.1, T4.61.1

19 Mobility YES T4.61.1

20 Real time support YES T4.62.3, T4.46.1, T4.61.1

21 Real time output YES T4.62.3, T4.46.1, T4.61.1

22 Unique identifier YES T4.60.7, T4.46.1, T4.61.1

23 Device semantic definition YES T4.60.7, T4.61.1

25 Remote programming of devices YES T4.62.3, T4.46.1, T4.19.1,
T4.61.1

26 Remote device control YES T4.62.3, T4.46.1

43 IoT Services discovery YES T4.19.1, T4.61.1

89 Priority of routing and processing of critical
messages upon low-priority sensor data

YES T4.62.3, T4.46.1

API

243 Gateway access API YES T4.19.1, T4.61.1

Interoperability

13 Extensibility YES T4.61.1

16 Inter-connection support YES T4.60.7, T4.61.1

55 Independence of network layer YES T4.19.1, T4.61.1

56 Secure synchronization YES T4.62.3, T4.46.1

93 Standard protocol for the device
communications

YES T4.62.3, T4.46.1

138 User device capability detection YES T4.60.7, T4.19.1, T4.61.1

226 API for network services YES T4.19.1, T4.61.1

Legality

29 Communication legislation and law YES T4.60.1, T4.60.2

Operational

57 Device monitoring and self-awareness of the
system

YES T4.62.3, T4.46.1

75 The interaction between IoT endpoints may
follow the M2M communication concept

YES T4.62.3, T4.46.1

D6.3: Site Acceptance Test Plan

111

204 Support smart network resources allocation in
heterogeneous wireless sensor networks

YES T4.62.3, T4.46.1

205 Provide services to detect and predict devices’
events in heterogeneous wireless networks

YES T4.62.3, T4.46.1

206 Support scalable devices using power saving
communication protocols

YES T4.62.3, T4.46.1

207 Shall support scalable network topologies YES T4.60.7, T4.62.3, T4.46.1

Performance

72 Communication should be done using protocols
that are efficient in terms of amount of
exchanged information over message size

YES T4.62.3, T4.46.1, T4.61.1

Security

27 System security YES T4.62.3, T4.46.1

28 System privacy YES T4.62.3, T4.46.1

95 Robustness, resilience and availability YES T4.62.3, T4.46.1

98 Data provenance YES T4.61.1

Virtualization

242 Object/Device virtualization YES T4.60.7, T4.62.3, T4.46.1,
T4.61.1

244 Gateway virtualization YES T4.19.1, T4.61.1
Table 24: Requirements vs. test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered Test code

* Warehouse storage monitoring YES All tests
Table 25: Scenario vs test mapping

3.3.3.4 Test environment

Introduction

To test the functionality of the integrated INTER-Hare in combination with the IoT framework
representative test hooks in the system are needed. This chapter will describe this
environment and the used hardware, software, tools and platforms.

Test environment

This testbed is considered as the last stage of implementation of the INTER-HARE platform
and will be useful to evaluate the system’s performance in real conditions as well as to
provide developers with enough information to set the best configuration for the given
scenario. Therefore, it is possible to list the mail goals of this testbed (or test setup for
integration) as:

1. To validate in a real scenario the different hardware elements included in the INTER-
HARE platform.

2. To validate the different communication protocols developed for the INTER-HARE
platform and analyze their performance.

3. To validate (according to the INTER-IoT consortium) an end-to-end communication
scheme with the rest of the INTER-IoT platform, thus ensuring interoperability between
both environments.

D6.3: Site Acceptance Test Plan

112

UPF first proposed to test its INTER-HARE platform in the Monitoring reefer container use
case. The scenario is focused on tracking and monitoring the temperature of the container
through different operators along its route, and to obtain faster responses in front of any
issue with the temperature of the container.

However, and thanks to the expertise of the INTER-IoT project partner Valenciaport
Foundation8 (VPF), two main issues were detected prior to the deployment of a scenario
based on real containers at Port of Valencia:

1. Metallic structure of port reefer containers may hinder the proper propagation of wireless
signal and even block any kind of communication between the devices previously
employed by UPF.

2. Port reefer containers stored at Port of Valencia are sealed with a seal number in order to
prevent any container tampering until it has reached its final destination. This preventive
measure makes difficult the deployment of wireless devices within these containers.

As an alternative solution, VPF proposed to change the use case to Warehouse storage
monitoring and conduct the performance evaluation of the INTER-Hare in an ad hoc testbed
located in one or some selected warehouses of Friopuerto9, Valencia.

Friopuerto aims to provide port-oriented coldstorage services for importers and exporters
internationally. It currently operates coldstore facilities in Mexico, Morocco, Portugal, Spain
and Uruguay, all of them inside port zones. Its broad range of customers benefit from a state-
of-the-art technology and processes to run frozen and chilled chambers, where they offer all
kind of transloading, cross-docking and value-added services.

Figure 58: Friopuerto location at Valencia city

Friopuerto’s vision is to provide top of the line services for perishable cargo requiring
temperature control. They strive to assist any company in:

 Warehousing
Friopuerto coldstores are clearly foreign-trade oriented and thus they are located within
ports or very near them. They have been built with flexibility in mind, so they all
incorporate different chambers for both chilled and frozen product. Their rack systems
can be adapted for different pallet heights depending on customer needs.

8 Valenciaport Foundation main website - http://www.fundacion.valenciaport.com
9 Friopuerto main website - http://www.friopuerto.com/

D6.3: Site Acceptance Test Plan

113

 Added-value services
Friopuerto facilities are designed to provide its customers with added-value services to
help them streamline their supply chains. From picking and packing, to labelling and
processing, its staff meets the demands of the most requiring clients.

 Transportation
Friopuerto can assist companies with a broad range of transportation services, either
directly or through top-class partners. They specialize in inland haulage of reefer
containers as well as pick-up and distribution with refrigerated trucks for both LTL (Less
than Truck Load) and FTL (Full Truck Load) shipments.

Figure 59: Friopuerto warehousing facilities at Valencia

SAT experiments will be conducted in the Friopuerto’s coldstore located at Port of Valencia,
a 10.000 m2 reefer warehouse with a storage capacity of up to 12.000 palet positions. After
its 2015 extension, the facility now has 12 loading docks, 4 frozen chambers operating at -
21ºC and 4 chambers for chilled products operating at temperatures from +2ºC to +14ºC.

Figure 60: Main features of Friopuerto’s coldstore

Friopuerto is the only cold store operating inside the port of Valencia, which allows
customers to enjoy cost savings and reducing the time needed for their operations. Being
located inside the port, stored products can be stored under bonded and non-bonded status.
Valencia is Spain’s largest port and the hub for the Madrid area.

As for the specific coldstores planned to be used in the SAT tests of the INTER-HARE
platform, their average temperature ranges from +8ºC to +10ºC. As it can be seen in
Table 26, these values are included within the limits of the operating ambient temperature
range of Zolertia RE-Mote.

Table 26: Recommended operating conditions of Zolertia RE-Mote (Zolertia, 2016)

The features of the DHT22 temperature and humidity sensor that will be employed in SAT
make it able to measure the temperature of Friopuerto coldstores, as this sensor has an
operational range from -40ºC to +80ºC (see Table 27). Additionally, its error behaviour
depending on the measured temperature is offered in Figure 61.

D6.3: Site Acceptance Test Plan

114

Table 27: DHT22 temperature performance

Figure 61: DHT22 Maximum temperature error
depending on the measured value

Hardware components

A comprehensive list of all devices (and their consisting hardware components) considered
for the INTER-HARE testbed is provided in Table 28.

Table 28: List of INTER-HARE testbed components

INTER-IoT gateway

The INTER-IoT gateway (specifically, its physical part) is considered the brain of the INTER-
HARE platform and the single point of contact between the physical network and the rest of
the INTER-IoT system. Due to this dual conception, it is easy to split its internal architecture
into the conforming elements responsible for interacting with the network running the INTER-
HARE platform (transport network) and the ones exchanging information with the rest of the
INTER-IoT system (integration network).

As for the part of the INTER-IoT gateway addressed to the transport network, it can be
perfectly performed with a Zolertia RE-Mote working at 868 MHz.

D6.3: Site Acceptance Test Plan

115

Relay device

Only if it is necessary to extend the range coverage of the LPWAN network and retransmit
the information from both the INTER-IoT gateway and the cluster-heads in the transport
network, a relay device has been also considered in the INTER-HARE architecture. The
Zolertia RE-Mote working at 868 MHz has also been the selected technology to perform this
task.

Cluster-head

Cluster-heads are entitled by the INTER-IoT gateway to manage their corresponding LPLAN
in a hierarchic way. They are the only elements with a multiband radio module (working at
868 MHz and 2.4 GHz), so that they gathered the information transmitted by data acquisition
devices of their own LPLAN at 2.4 GHz and retransmit it to the INTER-IoT gateway (or
alternatively, to the closest relay device) at 868 MHz through the LPWAN.

Originally, Zolertia Orion Router10 was the selected device to perform the role of cluster-head
due to its ability to communicate with devices both from 868 MHz and 2.4 GHz band.
However, the operating frequency must be selected in the programming stage and cannot be
changed during execution time, thus making impossible the normal CH operation.

Figure 62: Cluster-head developed for the INTER-HARE platform

The proposed solution for developing a fully functional CH consists of connecting two Zolertia
RE-Motes (one working at 868 MHz and the other one at 2.4 GHz) in a master-slave
scheme. The one working at 868 MHz acts as master, controlling the activation and

10 Zolertia Orion Router main website - https://github.com/Zolertia/Resources/wiki/Orion

D6.3: Site Acceptance Test Plan

116

deactivation cycles of the slave. In addition, the master device also includes a DHT22
temperature and humidity sensor and a Grove luminance sensor for monitoring purposes
(see Figure 62).

Data acquisition device

Data acquisition devices are those elements deployed directly on the area where one or
more environmental variables must be monitored. In the current project, the selected data
acquisition device is a Zolertia RE-Mote only working in its 2.4 GHz frequency band.

As for the additional sensor embedded in these devices, the selected one has been the
DHT22 temperature and humidity sensor. Transmission of environmental data acquired by
the DHT22 sensor is transmitted to the Zolertia RE-Mote by means of an analogic connector.
Additionally, a Grove luminance sensor can be also attached to the device in order to detect
the intensity of the ambient light (in %) on a surface area.

Software components

Contiki 3.0 OS11 is selected to validate the INTER-HARE platform, mainly due to its ability to
easily execute multiple processes concurrently and its powerful COOJA network simulator.
The INTER-HARE platform will be fully programmed in novel hardware-independent
modules, one for each of the four possible network roles (INTER-IoT gateway, relay device,
cluster-head device, and data acquisition device), adding all the required functionalities in
order to ensure the proper operation of the transport network.

As for the integration network, the controller will be programmed in Java, embedded as a
OSGi extension system together with all the other required functionalities needed to properly
run its functionality; i.e., communication modules and INTER-IoT libraries are provided. This
extension is compiled and compressed in a .jar file and stored inside the corresponding
folder structure.

Deployment

Performance evaluation will be performed in an ad hoc testbed located in one or some
selected warehouses of Friopuerto. The proposed testbed will consist of the elements
depicted in Table 29, which will run their own version of the INTER-HARE platform.

Device Quantity

INTER-IoT gateways 1

Cluster-heads
(868 MHz & 2.4 GHz)

2

Data acquisition devices (2.4 GHz) 4 or more per cluster-head (8 in total)

Relay devices (868 MHz) Only if necessary
Table 29: Estimated pilot equipment

11 Contiki OS main website - http://contiki-os.org/

D6.3: Site Acceptance Test Plan

117

Test tools, hooks and probes

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

Test setups

Test setup Description

TS_01 Point-to-point topology (868 MHz)

TS_02 Point-to-point topology (2.4 GHz)

TS_08 Full INTER-IoT topology

Table 30: Test setups summary

TS_01 Point-to-point topology (868 MHz)

The point-to-point topology consists of only 1 GW and 1 CH, both working at 868 MHz
frequency band. It is mainly intended to determine the channel conditions at this frequency
band and the maximum coverage range achievable.

Figure 63: TS_01 network topology

TS_02 Point-to-point topology (2.4 GHz)

Similar to the previous topology, only two devices are used in this setup: 1 CH and 1 DAD. In
this case, both devices work at 2.4 GHz frequency band and their main purpose is to
determine the channel conditions.

D6.3: Site Acceptance Test Plan

118

Figure 64: TS_02 network topology

TS_08 Full INTER-IoT topology

Lastly, all the elements of the INTER-HARE platform are interconnected in this test setup,
from the data acquisition devices to the virtual gateway. As described in the system’s
architecture, two different networks collaborate to ensure end-to-end communications:

A. The transport network, consisting of the DADs, the CHs and the GW.
B. The integration network, consisting of the GW (considered in the deployment as the

physical gateway), and the virtual gateway with its related middleware.

Figure 65: TS_08 network topology

D6.3: Site Acceptance Test Plan

119

Test tools

Test setup Description

TT_01 Java viewer tool

TT_02 Zolertia RE-Mote leds

TT_06 Development and demonstration environments setup

Table 31: Test tools summary

TT_01 Java viewer tool

To facilitate the debug of the programmed protocols, code will contain messages and flags
that will be transmitted via serial output by each system’s device. All Zolertia platforms have
a serial-to-USB converter on-board, meaning that devices can be connected to one USB port
of a PC without any additional hardware but a cable. Serial output implemented in Contiki OS
is supported by the standard C library API for printing.

However, to see the messages generated by devices is necessary to maintain a Linux
terminal session active, which in turn makes difficult to store the received information. For
this reason, it has been necessary to define the requirements of a new monitoring tool:

 Multi-platform (Windows, Linux, Mac OS)
 No necessity of Contiki OS previously installed
 Connection via USB
 Log recording
 Data filtering
 Debugging

The result is a Java-based monitoring tool able to gather, show and store all the log
messages emitted by an STA directly connected to a PC via an USB cable. As can be seen
in Figure 66, the tool informs about the COM port in which the STA is connected (for
instance, /dev/com5) and show the ID of the STA once it has been properly recognized (in
the example, ID is 6).

Different filters based on character strings can be applied on the gathered information in
order to show only some relevant data or those debugging flags placed in the code run by
STAs. Information can also be exported to a .txt file for post-processing purposes.

D6.3: Site Acceptance Test Plan

120

Figure 66: INTER-HARE monitoring tool based on Java

TT_02 Zolertia RE-Mote leds

LEDs are a simple but important tool to communicate with users or to debug programs. Each
one of the hardware platforms over which the INTER-HARE platform will contain its own set
of led codes.

D6.3: Site Acceptance Test Plan

121

Figure 67: A Zolertia RE-Mote device with its led switched on in red

TT_06 Development and demonstration environments setup

As defined in Deliverable 3.2. Methods for Interoperability and Integration, to enable an
homogeneous controlled environment for the development of the different layers, a
development cloud environment has been set up.

This environment is based in the Microsoft Azure Cloud and comprises a set of 7 commodity
servers to decouple the different software modules development and, at the same time,
making the latest features available to be tested. These servers are all accessed through a
unique stepping-stone server. The access to this environment is securized through Microsoft
Azure standard security mechanisms.

Test hooks

Test setup Description

TH_01 Iterative switching on

TH_02 Continuous traffic injection

TH_03 Random traffic injection

TH_04 Error addition

TH_05 Occasional switching off

TH_06 User browsing

Table 32: Test hooks summary

TH_01 Iterative switching on

A device is switched on repeatedly, executing its initialization process. Although each
considered device (gateway, cluster head, relay and data acquisition device) is programmed
with different functions, they all will try firstly to send a discovery message to their immediate
parent and start their corresponding mechanism in order to be registered in the network.

In some tests, this iterative switching on will be performed in the CHs or the DADs from
increasingly distances to their closer GW or CH, respectively. It will be useful to determine
the maximum distance from which that device can establish a connection with its parent.

TH_02 Continuous traffic injection

D6.3: Site Acceptance Test Plan

122

Continuous traffic injection consists in the periodic data acquisition and/or simulation by
DADs and its corresponding transmission to their immediate parent. By following the beacon
scheduling of the INTER-HARE platform, DADs will send a data packet every cycle.

TH_03 Random traffic injection

Random traffic injection is conceived as random processes executed in both the GW and the
DADs, generating query-driven and event-driven traffic, respectively.

 Query-driven traffic is generated at the GW and consists of a data request which
must be transmitted to a specific DAD of the network (for instance, a user asks for the
temperature value of a determined station).

 Event-driven traffic is generated at DADs when a predetermined threshold has been
surpassed (for instance, the temperature sensor has detected a value over 40 °C).

TH_04 Error addition

The whole system can be altered with the arbitrarily introduction of a certain error probability
when sending both application packets and their corresponding ACKs (it is worth noting here
that neither messages implied in the association process nor statistics packets are affected
by arbitrary generated errors to not artificially disturb the network setup nor the collection of
operation information).

Errors are generated through a uniformly distributed random variable according to mean
error values from four different error configurations (see Table 33). Before sending a
message, STAs compute this value and discard messages accordingly.

Error
configuration

Data Error ACK Error

E0/0 0% 0%

E10/5 10% 5%

E20/10 20% 10%

E30/15 30% 15%
Table 33: Definition of error configurations

TH_05 Occasional switching off

In some tests, an STA will be deliberately switched off in order to analyze the behaviour of
the rest of the network to overcome this issue and rearrange the routing paths to the GW.

TH_06 User browsing

The user of the platform freely browses the different network configuration options and
receives information regarding the network state and main functionalities.

D6.3: Site Acceptance Test Plan

123

Test probes

Test setup Description

TP_01 Gateway log

TP_02 Cluster Head log

TP_03 Relay log

TP_04 Data Acquisition Device log

TP_05 INTER-FW portal

Table 34: Test probes summary

TP_01 Gateway log

The Gateway log includes information regarding both the transport and the integration
network. It is stored in separated files according to the file system implemented in the device.

A summarized version of this log, only containing net information and network events could
be optionally stored in a microSD connected to the device.

TP_02 Cluster Head log

The Cluster Head log is a file created by this device where all the gathered information as
well as all hooks and flags are stored. It also includes information about the DADs directly
associated to that device.

TP_03 Relay log

Similarly to other logs, the Relay log is a file which contains all the information received and
transmitted by this device.

TP_04 Data Acquisition Device log

The Data Acquisition Device log is created each time this device is started and includes
information with regard to the data acquired from sensors and to the connection with the
corresponding CH.

TP_05 INTER-FW portal

As described in the example demo of Subsection 4.2.6. Demo from Deliverable 3.2.
Methods for Interoperability and Integration, the INTER-FW portal is used to demonstrate
how the data flows through all the test setup.

D6.3: Site Acceptance Test Plan

124

3.3.3.5 Test description

Warehouse storage monitoring

The objective of this scenario is to interoperate and use a warehousing company IoT
platform that is currently able to monitor cargo from reefer containers during its storage in
coldstores. This integration will allow a quick reaction in case of an alarm regarding the
functioning of refrigerated goods and it will benefit warehousing companies to avoid the
periodic human inspection required for this kind of cargo.

Interoperability in this scenario is required to connect the IoT platforms from warehousing
and transport companies as well as final cargo owners.

The resulting service will be obtained by the integration of:

- IoT platform of warehousing company
- IoT platform of transport company
- IoT platform of final cargo owner

The coldstores from the warehousing company Friopuerto, located at Port of Valencia, will
be the selected facilities where the different tests from SAT will take place.

A comprehensive list of the considered use cases together with their associated tests is
defined in the following lines.

Use case Associated test

[19] User interacts with sensors or devices T4.19.1 User interaction

[46] Device failure detection T4.46.1 Resilience against failures

[60] Device registry T4.60.1 Range coverage at 868 MHz

T4.60.2 Range coverage at 2.4 GHz

T4.60.7 Multiple sensor registration

[61] Platform Configuration on the Gateway T4.61.1 Platform setup and simulation

[62] Device (sensor) triggers information T4.62.3 Hybrid data delivery model test
Table 35: Summary of SAT tests and definition

Concept Test
code

Test name Test
setup

Tools Hooks Probes Outcomes

A. Range
coverage

T4.60.1 Range
coverage at
868 MHz

TS_01 TT_01
TT_02

TH_01 TP_01
TP_02

Max. distance

T4.60.2 Range
coverage at
2.4 GHz

TS_02 TT_01
TT_02

TH_01 TP_02
TP_04

Max. distance

B.
Association &
Registration

T4.60.7 Multiple
sensor
registration

TS_08 TT_01
TT_02
TT_06

TH_01 TP_01
TP_05

Pass/Fail,
Assoc. delay

C. Data
transmission

T4.62.3 Hybrid data
delivery
model test

TS_08 TT_01
TT_06

TH_02
TH_03
TH_04

TP_01
TP_05

Pass/Fail,
PDR (%),
Delay,
Throughput,
PRM, Energy

D6.3: Site Acceptance Test Plan

125

consumption

D. Resilience T4.46.1 Resilience
against
failures

TS_08 TT_01
TT_06

TH_02
TH_03
TH_05

TP_01
TP_05

Pass/Fail

E. Integration
network

T4.19.1 User
interaction

TS_08 TT_02
TT_06

TH_02
TH_03
TH_06

TP_05 Pass/Fail

T4.61.1 Platform
setup and
simulation

TS_08 TT_02
TT_06

TH_01
TH_02
TH_03
TH_05
TH_06

TP_05 Pass/Fail

Table 36: Diagram compiling the different test setups

C
O

N
C

E
P

T

A
.

R
an

g
e

C

o
ve

ra
g

e

B
.

A
ss

o
ci

at
io

n

&
 R

eg
is

tr
at

io
n

C
.

D
at

a
tr

an
s

m
is

s
io

n

D
.

R
es

ili
en

ce

E
.

In
te

g
ra

ti
o

n

n
et

w
o

rk

TEST
CODE

T
4.

60
.1

T
4.

60
.2

T
4.

60
.7

T
4.

62
.3

T
4.

46
.1

T
4.

19
.1

T
4.

61
.1

ARCHITECTURE 2 X X X X

6 X X X

9 X X X

COMMUNICATIONS 7 X

14 X

15 X

17 X X X

18

39 X

45 X

80 X X X

153 X X

232 X X

233 X X X

FUNCTIONALITY 11 X X X X X

19 X

20 X X X

D6.3: Site Acceptance Test Plan

126

21 X X X

22 X X X

23 X X

25 X X X X

26 X X

43 X X

89 X X

API 243 X X X X

INTEROPERABILITY 13 X

16 X X

55 X X

56 X X

93 X X

138 X X X

226 X X

LEGALITY 29 X X

OPERATIONAL 57 X X

75 X X

204 X X

205 X X

206 X X

207 X X X

PERFORMANCE 72 X X X

SECURITY 27 X X

28 X X

95 X X

98 X

VIRTUALIZATION 242 X X X X

244 X X X X
Table 37: List of requirements to be analyzed in each test

U19 – User interacts with sensors or devices

The whole platform is accessed remotely by the user, who can change some configuration
settings. The user experience is analyzed.

T4.19.1 User interaction

ID T4.19.1

Test User experience analysis when configuring the INTER-HARE platform

Type E. Integration network

Setup Need test setup TS_08

D6.3: Site Acceptance Test Plan

127

Start All DADs, CHs and the GW are already registered.

Req. [80], [11], [25], [43], [243], [55], [138], [226], [244]

Input Test hooks TH_02, TH_03, and TH_06

Output Check system’s ability to configure the parameters selected by the user.

Logs E. Integration\T4.19.1_ux.txt

Outcome Pass / Fail

U46 – Device failure detection

The system is able to detect problems in intermediate devices (CHs and DADs) and to act
consequently, by reconstructing routing paths and ensuring data transmissions.

T4.46.1 Resilience against failures

ID T4.46.1

Test INTER-HARE resilience analysis against failures

Type D. Resilience

Setup Need test setup TS_08

Start All DADs, CHs and the GW are already registered.

Req. [6], [9], [7], [17], [153], [232], [233], [11], [20], [21], [22], [25], [26], [89], [56], [93],
[57], [75], [204], [205], [206], [207], [72], [27], [28], [95], [242]

Input Test hooks TH_02, TH_03, and TH_05

Output Check if the system is able to rebuild routing routes after one (or more) DAD (or
CH) switches off.
Check if the system is able to maintain high reliability levels after one (or more)
DAD (or CH) switches off.

Logs D. Resilience\T4.46.1_resilience.txt

Outcome Pass / Fail

U60 – Device registry

Devices are able to determine if they are within the range coverage of their immediate
parent. If so, they execute the association process to be part of the network by receiving the
corresponding network address and listening to the schedule beacons.

T4.60.1 Range coverage at 868 MHz

ID T4.60.1

Test Analysis of range coverage at 868 MHz

Type A. Range coverage

Setup Need test setup TS_01

Start GW located in a fixed position.
CH initially located close to the GW.
CH is moved further from the GW.

Req. [2], [39], [29]

D6.3: Site Acceptance Test Plan

128

Input Test hook TH_01 in different CH positions

Output CH inside or outside the range coverage of the GW.

Logs A. Range\T4.60.1_868.txt

Outcome Max. distance

T4.60.2 Range coverage at 2.4 GHz

ID T4.60.2

Test Analysis of range coverage at 2.4 GHz

Type A. Range coverage

Setup Need test setup TS_02

Start CH located in a fixed position.
DAD initially located close to the CH.
DAD is moved further from the CH.

Req. [2], [29]

Input Test hook TH_01 in different DAD positions

Output DAD inside or outside the range coverage of the CH.

Logs A. Range\T4.60.2_24.txt

Outcome Max. distance

T4.60.7 Multiple sensor registration

ID T4.60.7

Test Multiple DAD (sensor) registration into the INTER-IoT network

Type B. Association & Registration

Setup Need test setup TS_08

Start 1 GW, 2 CHs & multiple DADs located in a fixed position.

Req. [2], [6], [9], [14], [17], [45], [233], [11], [22], [23], [16], [138], [207], [242]

Input Test hook TH_01

Output Check proper CHs & DADs registration into the INTER-IoT network.

Logs B. Association\T4.60.7_multiple_reg.txt

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

129

U61 – Platform Configuration on the Gateway

The whole platform is accessed remotely by the user. The user configures the system,
activates the devices and controls the execution, even applying setup changes and/or
sending specific requests to selected DADs.

T4.61.1 Platform setup and simulation

ID T4.61.1

Test INTER-HARE setup and full simulation

Type E. Integration network

Setup Need test setup TS_08

Start All devices (1 GW, 2 CHs and multiple DADs) are located in a fixed position but
are not associated to the network yet.

Req. [17], [80], [11], [19], [20], [21], [22], [23], [25], [43], [243], [13], [16], [55], [138],
[226], [72], [98], [242], [244]

Input Test hooks TH_01, TH_02, TH_03, TH_05, and TH_06

Output Check system’s ability to configure the parameters selected by the user.
Check correct transmission of packets from/to DADs according to the hybrid
data delivery model.

Logs E. Integration\T4.61.1_platform_conf.txt

Outcome Pass / Fail

U62 – Device (sensor) triggers information

A device, typically a sensor, triggers an event sending determined information to the gateway
in order to be stored in the platform.

T4.62.3 Hybrid data delivery model test

ID T4.62.3

Test Performance analysis of hybrid traffic

Type C. Data transmission

Setup Need test setup TS_08

Start All DADs, CHs and the GW are already registered.

Req. [2], [6], [9], [15], [80], [153], [232], [233], [11], [20], [21], [25], [26], [89], [56], [93],
[57], [75], [204], [205], [206], [207], [72], [27], [28], [95], [242]

Input Test hooks TH_02, TH_03, and TH_04

Output Check performance of different network metrics.

Logs C. Transmission\T4.62.3_hybrid.txt

Outcome Pass / Fail

 PDR (%)

 Delay

 Throughput

 PRM

 Energy consumption

D6.3: Site Acceptance Test Plan

130

3.3.3.6 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Concept Test Description Outcome Value

A. Range
coverage

T4.60.1 Range coverage at 868 MHz Max. distance

T4.60.2 Range coverage at 2.4 GHz Max. distance

B. Association
& Registration

T4.60.7 Multiple sensor registration Pass / Fail

Assoc. delay

C. Data
Transmission

T4.62.3 Hybrid data delivery model test Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy
consumption

D. Resilience T4.46.1 Resilience against failures Pass / Fail

E. Integration
network

T4.19.1 User interaction Pass / Fail

T4.61.1 Platform setup and simulation Pass / Fail

 SAT Outcome Pass / Fail

Table 38: Test outcome overview

3.3.3.7 Integration ethics and security

Our research group, as a member of the Universitat Pompeu Fabra, has established
guidelines regarding ethics in all its projects. The university created the Internal Committee of
Projects (CIREP-UPF) in December 2014. The committee wants to improve the evaluation of
the ethical standards and personal data protection in research activities and academics
practices.

Every research project performed by our group is previously analyzed by the members of our
group following the guidelines of CIREP. The procedure is the following:

1. A self-assessment is performed by the principal investigators by filling an Ethics
Checklist Form. If a YES answer is checked, the IP must send the form and proceed
to step 2.

2. The IP has to prepare the following documents for the ethics committee: a summary
information form that includes the title of the project and a summary of the research
activity (including all the activities that involve any personal data or humans
participating in them); a procedure form, that includes a detailed description of the
methodology that the project will use in order to be evaluated by the CIREP; and,
finally, an informed consent form that will be used during the research activities.

3. An external evaluation by a reviewer in the specific research field is performed. A
peer review will be submitted by him/her to CIREP members.

4. Finally, the CIREP experts meet and discuss the researcher’s documents and the
peer review, to issue an Ethics Review Report to the researcher.

D6.3: Site Acceptance Test Plan

131

Our research project has been analysed following the Ethics checklist form, and, as it neither
contemplates the participation of humans nor uses any human data, the ethics of our project
has been evaluated and the basics requirements are fulfilled.

On the other hand, the use of confidential data along the pilot is not either contemplated.
Hence, the security is not compromised. The user IDs in our network are codified, so that
any external intruder with non-authorized access to the sensor network will not have any
knowledge on the data due to the codification of the elements belonging to the network.

Management of Research Data

INTER-HARE makes its research data Findable, Accessible, Interoperable and Reusable
(FAIR), following the EC data principles:

 Data protection legislation will be upheld at a national level as well as at a European
level. Project partners will have access to anonymised datasets for the purposes of
analyses based on well-protected identifier codes to denote identity.

 Data will not be shared, published or distributed without being pseudonymised first,
and access to the raw data will not be provided without justification and then in such a
way as to prevent any potential harm to participant. Data cannot be linked to any
individual (numeric codes are used for this data; no one is identifiable by the data
they provide).

 Primary data will be kept for the lifetime of the project (plus any statutory period), and
then will be physically and securely destroyed.

INTER-HARE aims to ease the accessibility to our generated data and as such the
technology providers of the project will also make available software libraries for reading the
provided data. The selected datasets will be stored in a server of one of the project partners
(UPV). Datasets will be accessible from the project website.

D6.3: Site Acceptance Test Plan

132

 Third Party: Mission Critical operations based on IoT analytics

The “Mission Critical operations based on IoT analytics” (MiCrOBIoTa) project, aims at
exploiting the INTER-IoT platform as a means to gather information from heterogeneous
sensors in a converged way. As a result, Nemergent will integrate a new “IoT monitoring and
analytics” component in its mission critical product portfolio, and especially into the
Nemergent Control Room application. Figure 68 illustrates the overall Nemergent mission
critical applications framework and the specific scope of the work proposed in MiCrOBIoTa.

Figure 68: Scope of MiCrOBIoTa activities.

Figure 69 depicts an overall description of the main system to be used, tested and integrated
in the scope of the INTER-IoT project.

Figure 69: Overall system description.

The Nemergent Control Room system is made up of two main components.

The Nemergent Frontend component is an extensible HTML5-capable control interface that
communicates through a Java backend with a plethora of different services and data
providers. This component is built upon a series of state-of-the-art web technologies. The
protocol used to sync real-time data between the Java backend and the HTML frontend is

D6.3: Site Acceptance Test Plan

133

defined as a series of JSON messages encapsulated through a WebSocket tunnel, in order
to provide bidirectional real-time flows between the final user and the rest of the system.

A new provider has been added to the Nemergent Control Room, which handles all
messages related to this project. This provider generates events that other frontend
components can receive after subscription. For example, events can be created when new
devices are received, which can be used for updating the map to include these devices.

The Nemergent Back-end is a Java-based component that implements most of the business
logic related to data gathering and the specific interfaces to the different underlying systems.
Similarly to the front-end, the back-end component uses several modern technologies and
implements specific connectors to each underlying communications system.

In the scope of INTER-IoT, a new connector has been developed to cover the
communication with the INTER-IoT platform. This connector implements all the necessary
calls to the INTER-IoT API in order to gather the selected information with the corresponding
message formats and data types.

Also, a new service has been created, which will decide what to do in response to each of
the messages. Measurement data processing is done by a new module (analytics engine).
For example, temperature variation can be monitored, raising an alarm when it exceeds a
predetermined threshold.

The INTER-IoT – backend and backend – frontend interfaces are detailed in the appendix.

The anticipated benefits of interoperable “Mission Critical operations based on IoT analytics”
are unquestionable. A typical situation in mission critical operations support systems is to
include information coming from specifically deployed devices to gather environmental
measurements. Examples of these devices are temperature sensors, meteorological and
hydrological probes, traffic monitoring cameras, etc. We propose to add the Mission Critical
IoT (MC-IoT) system, which includes a new monitoring and analytics component and an
evolved Control Room interface tailored to the specific needs of the use case. In the case of
a simulated crisis, significant information from on-body health-related sensors and port
logistics devices will provide life-saving information to the mission critical operations support
system. Besides, the available mission critical communications components can be used to
demonstrate the crisis handling use case.

D6.3: Site Acceptance Test Plan

134

Figure 70: IoT-aided Mission Critical operations scenario.

Taking into account the overall picture and the availability of different IoT platforms, a
complex use case could be created for an emergency simulation exercise. This scenario
would include a typical emergency intervention, enhancing the operations support through
the use of new communication technologies over commercial networks.

An example operational procedure is provided hereafter:

1. A road haulier comes into the port area. Upon an incident / health issue, the on-board
health monitoring sensor reports the anomalous data to the INTER-IoT system
through the road haulier company IoT platform.

2. The relevant data arrives at the Port Authority emergency control centre (CCE),
which manages incidents taking place within the port and coordinates with other first
responders (police, firefighters, ambulances, etc.).

3. The CCE operator accesses the MC-IoT system through the web-based Graphical
User Interface (GUI), which will provide different types of icons for the different
sources of information, and different views targeted at different emergency response
units.

4. The CCE operator can use this platform to communicate with field response units
(e.g., ambulance driver), providing them not only with location and navigation support
but also with specific context information useful for the intervention.
Besides the IoT-related data processing, the extended use case will make use of the
Nemergent Mission-Critical Push-To-Talk (MCPTT) communication systems in order
to resemble real-time communication between the different entities involved.

D6.3: Site Acceptance Test Plan

135

3.3.4.1 Integration of IoT framework

From a high level architectural standpoint, the integration of the MC-IoT external application
is depicted hereafter.

Figure 71: High-level perspective of the integration.

The MC-IoT system will run as an external application to the INTER-IoT platform. In order to
access the heterogeneous data from different IoT platforms, the MC-IoT application needs to
interact with the INTER-LAYER “Platform interoperability” functional component, which
involves the “Communication and Control” and “MW2MW services” INTER-LAYER
components. This MC-IoT component will also need to interaction with the “Semantics”
functional component, which is implemented through the INTER-LAYER IPSM module.
Additionally, the MC-IoT external application may need the use of composite IoT-related
services. Thus, the invoking of the “Service interoperability” functional component may be
needed. This would require the involvement of the INTER-LAYER “Orchestrator” and
“Service management” components.

In order to interoperate with the INTER-IoT platform (e.g., registration, authorisation, etc.)
and being able to invoke the API functions, the MC-IoT external application will make use of
the INTER-FW tools and API. To some extent, the INTER-FW API acts as a wrapper of the
INTER-LAYER API, exposing only those methods available to the external applications.

From a use case perspective, the external application interfaces with the INTER-IoT
platforms in order to gain access to two / potentially three types of information:

1. Access to the port monitoring information (WSO2 platform).
2. Access to the health monitoring information installed on a haulier company (data coming

from MyDriving and UniversAAL systems and integrated through Microsoft Azure
platform).

3. Access to well-formed incident / emergency information, as potentially detected by a third
party Early Warning System and submitted to the INTER-IoT platform.

The process to obtain data from INTER-IoT platform is as follows:

1. Authentication: A token must be obtained to make the requests in the following sections.
A post request to the path /token with content
"grant_type=password&username=Username&password=Password" \ and

D6.3: Site Acceptance Test Plan

136

Authorization header “Basic Base64(consumer-key:consumer-secret)” is done in order
to obtain the token. Variables are marked in bold. These variables (Username, Password,
consumer-key, consumer-secret) are provided beforehand. The authorization value is the
Base64 encoding of the string consisting of consumer-key and consumer-secret
separated by ‘:’. A client has also been provided, with a client id that is needed for the
requests in the next steps. The calls to create this client or update it, if needed, are
detailed in the appendix.

2. Get devices: With a get request to the path /mw2mw/devices all devices are obtained,
with their id, name, location, etc. A platform can be optionally specified as a parameter to
obtain devices from a specific platform. In this pilot, with this request the Valencia port
INTER-IoT devices information will be obtained.

3. Subscribe to devices: Subscription to some of the devices obtained in the previous step
must be done in order to receive events about the devices. This is done using a post
request to the path /mw2mw/subscriptions, specifying in the content the deviceIds of the
devices to subscribe to. A conversation id is returned to identify that subscription.

4. Get events: The method for obtaining the event data is specified when creating the client,
and it can also be updated (with PUT /mw2mw/clients/{managedClientId})
1. Pull: Messages will be obtained by making periodical POST requests to

/mw2mw/responses.
2. Push: A callbackUrl is specified for the client (can also be updated, like push or pull

policy). The server will send the messages to that url, using a POST request.
For example, a subscription to a weather measurement device in the Valencia port can
be performed. After that, messages will be received, with the measurement data, such
as average temperature, wind speed, etc.

Figure 72: Use case perspective of the integration.

Following the proposed pilot, the trucks will be monitored once they are in the port facilities.
In case an accident or a medical problem is detected, the Early Warning system will publish

D6.3: Site Acceptance Test Plan

137

a notification through INTER-IoT in a standard format (EDXL). Once the emergency control
centre receives the notification, it can start communication with the driver with a push to talk
protocol in the driver’s mobile.

The main benefits we can get from this scenario are: apply in the port communications a
standard format in accident reporting like EDXL, real time identification of the location of the
accident, direct communication with the closest control centre when an accident occurs and
monitoring driver's health if it is necessary.

3.3.4.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components

2 Validation and Test reports of the Pilot system components

Hardware

3 Gigabyte Barebone on which the Nemergent System is installed and configured

4 Additional Laptop with basic Internet Browsing Capabilities

5 Connection cables (Ethernet connection between both systems and Internet)

Tools

6 Preferably a recent Linux OS

7 TestNG Java

8 Jenkins 2
Table 1: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

Nemergent CtrlRoom Frontend

1 JSONoWS API V1.3.0

2 WebRTC API V1.0.0

3 GUI V1.0.0

Nemergent CtrlRoom Backend

4 JSONoWS API V1.3.0

5 MCPTT MS API V1.0.1

6 INTER-IoT API V1.0.0
Table 39: Component version overview

D6.3: Site Acceptance Test Plan

138

3.3.4.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

47 API for third-party developers T1.1.1, T1.1.2, T1.2.1,
T1.2.2, T1.2.3, T1.2.4,
T1.2.5, T1.3.1

51 API for data publication T1.2.3, T1.2.4, T1.2.5,
T1.3.1

53 Location of sensor and measurement is included in semantic
models

T1.2.1, T1.2.2

69 Confidentiality T1.2.5

123 Use of standards T1.1.1, T1.1.2, T1.2.3,
T1.2.4, T1.2.5, T1.3.1

Table 2: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

9 Accident at the port area T1.2.1, T1.2.3, T1.3.1

How to access the health information of the truck driver is still to be defined. This scenario
cannot be developed without this information.

32 Third party developer using INTER-FW to access data from
two different platforms

T1.1.1, T1.1.2, T1.2.1,
T1.2.3, T1.2.4

Table 3: Scenario vs test mapping

3.3.4.4 Test environment

Introduction

To test the functionality of the integrated Accident at the port area in combination with the IoT
framework representative test hooks in the system are needed. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test setups, hooks and probes used in the system used during
this SAT.

Test tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Wireshark, etc.

D6.3: Site Acceptance Test Plan

139

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 – Dedicated Docker Image

All the Nemergent testing activity will be performed inside an ad-hoc developed Docker
image, containing all the necessary software tools to perform this testing phase.

This image will contain the Jenkins instance, and will have a copy of the software
repositories freshly obtained in the moment of the Docker image building. This way,
Nemergent can assure maximal compatibility between hardware vendors, software
distributions and network environments. This image itself is prone to be tested inside a
continuous integration scheme.

With a command launched in the host Linux system, the integrated Jenkins tool will execute
all the tests sequentially, making detailed reports of the results available through its web
interface, along with performance measurements and precise timings. This Jenkins builds
will archive as artefacts all the network recordings, profiling files and log files produced
during the test executions.

The Nemergent CtrlRoom software will communicate with the INTER-IoT components
through the virtual network interface offered by Docker to the container, helping with the
network debugging issue.

TS_02 – Installed system and person monitoring physical environment

When testing final phase tests, where a person is required to operate the system and
another one has to be situated on field monitoring the real-life results of the whole project, a
real-time distant communication technology is to be used. If the project is deployed along
Nemergent’s cutting-edge MCPTT ecosystem, it could be used for reliable voice PTT
communications between the field monitoring person and the staff operating the
ControlRoom. Other options available as legacy PTT radio, regular phone call or VoIP
systems could be also used.

The staff operating the control room shall indicate the test number and/or test description to
the field monitoring person, and then wait for this other person to report field environment
changes back to the control room staff, in order to assess the test successful execution.

TT_01 - TestNG Java

As a testing environment we will use different suites of TestNG Java testing framework,
which will implement the different business logic associated with the working model. For
example, a different test suite can be generated for each different EDXL document type, thus
assuring maximal code coverage for each module and case.

TT_02 - Jenkins 2

The TestNG Java tests will be orchestrated though a Jenkins 2 server, using the newly
released Pipelines functionality, providing expressive description of the test case scenarios.

D6.3: Site Acceptance Test Plan

140

TH_01 - Jenkins Pipelines

Jenkins Pipelines definitions support parameterized runs, which can be used to inject
relevant EDXL messages right into the message broker, depending on target of the tests.

TP_01 – Protractor

Graphical testing can be performed through the implementation of Protractor tests. These
tests can assure that frontend graphics being rendered on a virtual screen corresponds to
what the requirements requires. This would provide similar confidence as a real human
visual testing, for example that a specific EDXL document triggers the area and information
painting on the Port Control Centre.

3.3.4.5 Test description

Startup tests

T1.1.1 Boot up and first contact

ID T1.1.1
Test Nemergent MC-IoT Module boots up and contacts INTER-IOT Platform
Type System Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is not launched
Req. [47], [123]
Input Launch the Jenkins job labelled as “T1.1.1”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt

 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.1.2 INTER-FW Authentication

ID T1.1.2

Test Nemergent MC-IoT Module authenticates correctly against INTER-FW
gateway.

Type System Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is already launched, but module has only made first

contact.
Req. [47], [123]
Input Launch the Jenkins job labelled as “T1.1.2”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

D6.3: Site Acceptance Test Plan

141

 backend_log.txt
 frontend_log.txt

 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

Basic functionality tests

T1.2.1 Obtain a list of trackable entities

ID T1.2.1
Test Nemergent MC-IoT Module queries INTER-FW for a list of authorised

trackable entities.
Type Service Discovery
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [53]
Input Launch the Jenkins job labelled as “T1.2.1”

Output Check Jenkins job output, whether the job has succeeded or it has failed.
Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:
 backend_log.txt

 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.2.2 Paint all the trackable entities obtained

ID T1.2.2
Test Nemergent MC-IoT Module passes the processed data to the Nemergent

CtrlRoom main module and paints the listed entities on a map.
Type System Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [53]
Input Launch the Jenkins job labelled as “T1.2.2”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt

D6.3: Site Acceptance Test Plan

142

 test_report.html
Outcome Pass / Fail

T1.2.3 Subscribe to the event streams

ID T1.2.3

Test Nemergent MC-IoT Module performs subscription for the appropiate entities in
order to maintain updated information about them, but without over saturating
network and system resources.

Type System Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51], [123]
Input Launch the Jenkins job labelled as “T1.2.3”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap

 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.2.4 Receive updates from INTER-FW

ID T1.2.4
Test Nemergent MC-IoT Module passes the processed data to the Nemergent

CtrlRoom main module and repaints the listed entities on a map.
Type System Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51], [123]
Input Launch the Jenkins job labelled as “T1.2.4”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt

 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.2.5 Access control to resources

D6.3: Site Acceptance Test Plan

143

ID T1.2.4
Test CtrlRoom backend controls what resources can be accessed by which users.

Using the frontend client, this test will try to access resources, such as list of
devices or their information, as an unauthorized user.

Type System Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51], [69], [123]
Input Launch the Jenkins job labelled as “T1.2.5”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt

 test_report.html

End to end tests

T1.3.1 Accident at the port area

ID T1.3.1

Test Accident or medical emergency is simulated, via tampering with the related
sensors

Type End to end Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51], [123]
Input The field monitoring person simulates the medical emergency via tampering

with the sensors so they receive a signal that would indicate a medical
emergency and notifies the control room staff of when the tampering has been
performed to ensure that the alert occurs within a reasonable time frame.
Additionally launch the Jenkins job labelled as “T_others”

Output The alert is received in the control room, with the proper information about the
truck and container status.
Jenkins job output which consists of core components logs and network
captures.

Logs Jenkins Job artifacts section:
 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt

 test_report.html
Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

144

CtrlRoom failure testing

T1.4.1 Connection drops between frontend and backend

ID T1.4.1
Test Connection drops can occur occasionally between frontend and backend,

which can cause problems if not handled well. The system should buffer the
messages pending that couldn´t be transmitted when the socket was closed to
send when the reconnection happens. This test will purposefully close for a
time and then reopen the socket, while doing different requests from frontend
to backend, and check that the system recovers correctly (messages are sent,
although late, and all exchanges complete without errors).

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.4.1”

Output Check Jenkins job output, whether the job has succeeded or it has failed.
Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:
 backend_log.txt
 frontend_log.txt

 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.4.2 Authentication error

ID T1.4.2

Test Incorrect credentials will be provided in the authentication. Three scenarios
will be tested (only username incorrect, only password incorrect or both
password and username incorrect). Additionally, fringe cases would be tested,
such as what happens when username and/or password are left blank. The
expected result is a message indicating an authentication failure being shown
to the user and no further action taken.

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.4.2”

Output Check Jenkins job output, whether the job has succeeded or it has failed.
Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:
 backend_log.txt
 frontend_log.txt

 network_eth0.pcap
 network_capture_logs.txt

D6.3: Site Acceptance Test Plan

145

 test_report.html
Outcome Pass / Fail

T1.4.3 Containment in login page while unauthenticated

ID T1.4.3

Test While the user is not authenticated, pages outside the login page should be
unreachable. This tests will make petitions to each of the pages except the
login page while being in the unauthenticated status to ensure that all do
nothing but redirect to the login page.

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.4.3”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt

 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.4.4 Subscription to device error

ID T1.4.4
Test This test will try to request subscription to a device that doesn´t exist. A

message should be showed to the user making the subscription indicating that
error.

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.4.4”

Output Check Jenkins job output, whether the job has succeeded or it has failed.
Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:
 backend_log.txt
 frontend_log.txt

 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

146

Interface failure testing

T1.5.1 Recover from invalid token state

ID T1.5.1
Test For requests that use token for authorization, upon receiving a response with

status code unauthorized the token is refreshed automatically and the request
is repeated with a valid token. This test checks that making each of these
requests using an invalid token ultimately ends with the proper response, after
obtaining a new token

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.5.1”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt

 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.5.2 INTER-FW Connectivity loss

ID T1.5.2
Test Check that, when repeated requests fail to contact the INTER-FW server,

INTER-IoT functionality gets temporarily halted, and frontend receives
notification about it. After connectivity is recovered, frontend should receive a
notification about the end of the downtime, and all INTER-IoT functionality
should resume properly

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.5.2”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap

 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

147

T1.5.3 Malformed subscription event responses

ID T1.5.3
Test A malformed event response (received because of having subscribed to

devices. E.g weather measurements) should be ignored, and further
processing should not be performed. In case of pulling multiple messages at
the same time, a malformed message should not affect the processing of the
rest of the messages

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.5.3”

Output Check Jenkins job output, whether the job has succeeded or it has failed.
Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:
 backend_log.txt
 frontend_log.txt

 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.5.4 Health monitoring information unavailable

ID T1.5.4

Test When the system providing health monitoring information is unavailable, or not
working correctly, and thus not sending the needed information, functionality
should stop working gracefully, and this incident should be logged.
Additionally, frontend clients should receive an alarm indicating this problem,
with the maximum severity

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.5.4”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap

 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

148

T1.5.5 Malformed devices

ID T1.5.5
Test Get devices response should contain all required fields, with proper values

(Location must specify valid latitude and longitude, id, name and hostedBy
must be strings, etc.. This test will check that, for each type of malformation,
the backend behaves correctly, which is defined as logging the incident and
not doing any further processing. A malformed device information should not
be sent to the frontend.

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.5.5”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt

 test_report.html
Outcome Pass / Fail

T1.5.6 Values out of valid ranges

ID T1.5.6
Test For event data fields, values will be checked for validation. These are some of

the validation checks that can be performed:

 Emissions cannot be negative
 Wind speed cannot be negative
 Dates must follow the proper date format.

When receiving event data with invalid values, the message will not be
processed further, and an alert will be sent to the frontend, indicating the
reason for the message being invalid alongside the device id related to the
event data that caused the error.

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.5.6”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap

 network_capture_logs.txt

D6.3: Site Acceptance Test Plan

149

 test_report.html
Outcome Pass / Fail

T1.5.7 Trucks exited / entry correspondence

ID T1.5.7

Test Exited vehicles must be listed on a later date as entry vehicles. A vehicle
cannot be listed as exit vehicle or entry vehicle twice without its corresponding
entry/exit. This test will check that, when this occurs, a message is generated
indicated the anomalous situation to the frontend, and that this incident is
logged.

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.5.7”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt

 test_report.html
Outcome Pass / Fail

T1.5.8 Event must have a device

ID T1.5.8
Test Events must have a device associated. Events with a device id not

corresponding to an existing device must be discarded, without further
processing.

Type Failure Testing
Setup Need test setup TS_01
Start Nemergent CtrlRoom is properly launched and authenticated
Req. [47], [51]
Input Launch the Jenkins job labelled as “T1.5.8”
Output Check Jenkins job output, whether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.
Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt

 test_report.html
Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

150

3.3.4.6 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T1.1.1 Boot up and first contact Pass / Fail
T1.1.2 INTER-FW Authentication Pass / Fail

T1.2.1 Obtain a list of trackable entities Pass / Fail
T1.2.2 Paint all of the trackable entities obtained Pass / Fail
T1.2.3 Subscribe to the event streams Pass / Fail

T1.2.4 Receive updates from INTER-FW Pass / Fail
T1.2.5 Access control to resources Pass / Fail
T1.3.1 Accident at the port area Pass / Fail

T1.4.1 Connection drops between frontend and backend Pass / Fail
T1.4.2 Authentication error Pass / Fail
T1.4.3 Containment in login page while unauthenticated Pass / Fail

T1.4.4 Subscription to device error Pass / Fail
T1.5.1 Recover from invalid token state Pass / Fail
T1.5.2 INTER-FW Connectivity loss Pass / Fail

T1.5.3 Malformed subscription event responses Pass / Fail
T1.5.4 Health monitoring information unavailable Pass / Fail
T1.5.5 Malformed devices Pass / Fail

T1.5.6 Values out of valid ranges Pass / Fail
T1.5.7 Trucks exited / entry correspondence Pass / Fail
T1.5.8 Event must have a device Pass / Fail
SAT Outcome Pass / Fail

Table 4: Test outcome overview

3.3.4.7 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

Mission Critical operations based on IoT analytics

During the pilot execution, all the sensitive information (e.g., making reference to the INTER-
IOT system or to personal data of people taking part of the pilot) should be hidden from non-
authorized eyes at the moment of displaying the information at the Nemergent CtrRoom. The
Nemergent CtrlRoom, as the user-endpoint of the system, is the last step in a chain of
information processing, where all the information should have been secured and automated
by design. Thus, special effort will be paid to ensuring that user privacy and system security
is enforced at the Nemergent CtrlRoom GUI.

D6.3: Site Acceptance Test Plan

151

 Third Party: Early Warning System (EWS)

The goal of the H2020 INTER-IoT project is to support interoperability between
heterogeneous IoT platforms across the logistics and e-health domains [1]. For
demonstration and validation purposes, the project described scenarios to decrease the risk
of fatal accidents at the port of Valencia, improving health prevention and enabling quick
reaction by reducing time response [2]. The goal of this scenario is to exploit how e-Health
and e-Care can use IoT platforms dedicated to logistics to prevent the occurrence of
accidents and to support evacuation or attention in case of emergency situations.

An early warning system (EWS) is a distributed system that monitors the physical world and
issues warnings if it detects abnormal situations. The Internet-of-Things (IoT) offers
opportunities to improve monitoring capabilities of EWS and to realize (near) real-time
warning and response. The INTER-IoT-EWS goal is to detect accident risks with trucks that
deliver goods at the Valencia port area, interoperating different IoT platforms. The solution
addresses the semantic integration of a variety of data sources with processing in safety-
critical applications for effective emergency response. The solution considers existing
domain-specific ontologies and standards, along with their serialization formats. Accident
risks are assessed by monitoring the drivers’ vital signs with ECG medical wearables, and
the trucks’ position with speed and accelerometer data. Use cases include the detection of
health issues and vehicle collision with dangerous goods. This EWS is developed with the
SEMIoTICS framework, which is composed of a model-driven architecture that guides the
application of data representations, transformations and distributed software components.
This framework enables EWSs to be a semantic broker for situation-aware decision support.

Early Warning System (EWS)

An EWS is a system for “the provision of timely and effective information, through identified
institutions, that allows individuals exposed to a hazard to take action to avoid or reduce their
risk and prepare for effective response” [3]. An effective EWS must be people-centered and
integrate knowledge about the risks, risks’ monitoring and warning, dissemination of
meaningful warnings and public awareness [4]. Modern EWSs comprise software and
hardware for data acquisition, situation awareness, decision-making, and information
dissemination. Current experimental prototypes incorporate IoT technology to improve their
functionality [5]. The conceptual architecture of EWS typically consists of three parts [3, 5, 6]
(Figure 1, top):

(i) Upstream data acquisition: Distributed sensor systems transform observations into
digital signals, pre-process the associated data values to ensure that they represent relevant
information for decision making and transmit these data values to a message- and/or event-
oriented middleware (broker).

(ii) Decision support: The data is stored in a data storage and is subjected to rules to detect
situations of interest. The rules are represented as models, which can be deterministic (rule-
based) and/or non-deterministic (machine learning) approaches. Once a situation is
detected, the EWS considers the requirements of the alert targets to assess the risk and
determine the emergency response.

(iii) Downstream information dissemination: Different target groups, comprising humans
(e.g. the public) and machines (e.g. sirens), receive adequate messages.

Interoperability is an important feature of effective EWSs for the integration of internal
components and interworking of different EWSs. The level of interoperability depends on the
standardization of interfaces, data exchange formats and protocols [6]. The design problem

D6.3: Site Acceptance Test Plan

152

to be addressed here is the improvement of IoT EWSs’ interoperability with data sources,
alert targets, and other EWS to detect emergency risks.

INTER-IoT-EWS

Requirements and use cases

The requirements given in the scenario are:

(IIOT-FR1) IoT platforms should be able to coordinate with emergency systems by detecting
accidents and accident risks with trucks within the port area. The EWS should be able to
identify vehicle collisions and severe changes of the driver’s cardiac behavior, alerting
their urgency and severity to multiple targets. The acceptance criteria is to check if the
EWS, built on top of IoT platform(s), is able to coordinate with emergency systems
through emergency interoperability standard(s).

(IIOT-FR2) The haulier IoT platform and the port IoT platform should be able to share health
information about the driver, monitored in real-time through an electrocardiography (ECG)
device. The solution should be able to provide both raw and calculated data, e.g. ECG
sequence (time series) and heart rate (HR). These data need to be integrated in a way
that the port emergency control system can consume them. The acceptance criteria is to
check if the EWS, at the application level, is able to process the health data to identify
cardiac issues and be able to send data to emergency systems based on emergency
interoperability standard(s).

(IIOT-NFR1) IoT platforms should be semantically and syntactically interoperable. The
solution should be able to integrate the involved IoT platform(s) in a way that their data
syntax and semantics are understandable, i.e. can achieve common understanding
among the participating parts. The acceptance criteria is to check the use of a mechanism
to translate data syntax (lexicon) and semantics of messages exchanged.

(IIOT-NFR2) E-Health and logistics should be integrated at the INTER-IoT application and
semantics (A&S) level, including primitives for data interpretation of medical and logistics
data. The acceptance criteria is to check the use of semantic models to represent e-health
and logistics data within the IoT use cases (listed below).

(IIOT-NFR3) The energy consumption (battery level) of the devices being used for the
situation identification mechanism should be monitored. The acceptance criteria is to
check if the solution is able to provide energy consumption data for the application level,
consumed by the EWS.

Five use cases were conceived to test these requirements:

(UC01) Vehicle collision detection: use of accelerometer data of the truck from mobile phone
and health device;

(UC02) Hazardous health changes: detect occurrences of stress and arrhythmia (e.g.
bradycardia and tachycardia);

(UC03) Temporal relations between UC01 and UC02: detect if a health issue occurred
before, during or after a vehicle collision;

D6.3: Site Acceptance Test Plan

153

(UC04) Accidents with dangerous goods: monitor dangerous goods being transported
(according to UN list of dangerous goods) in all use cases (1-3), adding the adequate
information regarding emergency procedures for effective response.

Note that UC03 has situations that require the integration of data from both domains (health
and logistics) and can represent complex behaviours. For example, there is a possibility that
bradycardia is detected followed by continuous decrease of the heart rate after a vehicle
collision is detected. This situation reflects a car collision where the driver got injured and is
classified as extreme severe with immediate urgency. In this situation the vehicle collision will
be identified with both accelerometers from the ECG device and from the smartphone,
considering device features, as accuracy and energy consumption.

Semantic IoT EWS framework

The “SEmantic Model-driven development for IoT Interoperability of emergenCy serviceS”
(SEMIoTICS) is a framework to improve the semantic interoperability within and among
EWSs [7, 8]. It consists of an architecture (Figure 1, bottom), technologies and guidelines
based on model-driven engineering (MDE) inspired in [9]. SEMIoTICS uses the Endsley’s
situation awareness theory [10], which is harmonized with the Unified Foundational Ontology
(UFO) [7] and aligned to the semantic healthcare system architecture [11].

Figure 73: Typical EWS architecture (top) and the SEMIoTICS architecture (bottom).

D6.3: Site Acceptance Test Plan

154

The architecture has six elements addressing the 3 main functions of an EWS:

(1) Input handler: upstream data acquisition through adaptors;

(2) Abstraction: foundational ontology;

(3) Context model: domain ontology;

(4) Situation model: complex event processing;

(5) Situation awareness: data flows,

(6) Output handler: downstream emergency notification.

It follows the publisher/subscriber pattern and RESTful services with JSON-LD.

Adaptors are implemented as syntactic and semantic translations [12]. The input handler is
responsible for message translation, which relies on the syntax of each ontology being used
and, therefore, will also require semantic as well as syntactic translations, e.g. from
RDF/XML to JSON-LD and from HL7 to EDXL. Messages are translated from the original
ontologies to our context model (core ontology), which is aligned to W3C SSN and
incorporates terms from EDXL and HL7. This approach aims on optimizing the data and
semantics maintenance when integrating distinct domains. The abstraction component refers
to foundational ontologies, which are designed to maximize the support for interoperability of
high level categories, e.g. event, process, physical object and system. The core ontology and
SSN are grounded on the UFO (through OntoUML) and DOLCE Ultralite (DUL), respectively
[7]. UFO and DOLCE share the same definitions for some conceptualizations, facilitating the
alignment between the ontologies extended with them.

The situation model is responsible for the situation identification mechanism, i.e. the
formalization of the emergency risk detection [13]. We adopted a rule-based approach,
allowing the specification and implementation of complex event processing (CEP). CEP is a
common component of IoT platforms to correlate data using temporal predicates (events’
relations), as Cepheus, the CEP engine of FIWARE IoT platform. Guidelines describe how
CEP technologies can implement the situation models, e.g. in Java ESPER12 and Drools
Fusion technologies [14]. Decision support is enabled by the adoption of a workflow
management system that enables the end user to design business processes, e.g.
emergency plans, as data flows. Big data integration tools for workflow development
automatically generates code and is able to deploy data flows at runtime, e.g. Node-Red13.
This component also covers the deployment and execution of the data flows for decision
making. The output handler is responsible for brokering the emergency risk notifications to
the correct targets, according to the emergency procedures defined on the decision support
component. For each predetermined risk, targets are enumerated with their information
requirements. The data format of the notifications follows EDXL standards serialized as
JSON-LD. The risk notification services are exposed as data publishers.

Solution

The solution architecture (Figure 74) includes the Shimmer ECG 3 device14 to collect ECG
data from drivers. This device has high accuracy and usability, and provides a mobile
application (Shimmer Capture Xamarin), which uses the Shimmer API to transmit data from
the ECG device to a smartphone, enabling the mobile device to play the role of a “field

12 http://www.espertech.com/
13 https://nodered.org/
14 http://www.shimmersensing.com/products/ecg-development-kit

D6.3: Site Acceptance Test Plan

155

gateway”. This mobile app was improved with (a) semantic technologies, being able to
receive the data from the ECG device and enrich the data semantics with an extension of the
ETSI SAREF15 ontology (SAREF4health), and with (b) device-to-cloud connection, being
able to send the semantically enriched data as JSON-Ld messages to a cloud gateway
(“context broker”), i.e. the Microsoft Azure IoT Hub.

Similarly, the MyDriving mobile application for logistics (open use case of Azure IoT
platform16) transmits the data about the truck position, speed, acceleration and goods
information to the cloud infrastructure. These logistics data are serialized as JSON-LD
messages, following the structure of SAREF ontology aligned to LigiCO ontology17. SAREF
was chosen because of its capabilities for tracking devices’ energy consumption. IPSM
module is responsible for syntactically and semantically translate these data: from JSON-LD
to the INTER-IoT JSON-LD syntax, which is structured JSON-LD (two @graph) with
middleware information; and from SAREF to the INTER-IoT core ontology semantics, which
is aligned to SSN/SOSA. These translations are configured priory in IPSM by the application
developer through a REST service.

The data represented as INTER-IoT JSON-LD syntax and INTER-IoT core ontology
semantics are published in the broker in a topic, which the EWS subscribes to receive real-
time data. Then, the EWS input handler certifies whether new translations to harmonize the
data in the SEMIoTICS core ontology are necessary and, if so, the input handler requests the
translations to IPSM.

Figure 74: INTER-IoT-EWS to detect accident risks and accidents at the port of Valencia.

15 http://ontology.tno.nl/saref/
16 https://azure.microsoft.com/en-us/campaigns/mydriving/
17 http://ontology.tno.nl/logico/

D6.3: Site Acceptance Test Plan

156

The data is annotated with the core ontology and stored in a NOSQL database (MongoDB)
for historic data storage. Both real-time data and historic data are used by the risk (situation)
identification management component, i.e. the NESPER CEP engine [15]. Situation types
are defined a priori, as rule sets, describing the risky situations of interest based on
emergency plans. Each situation type is linked to a response process, i.e. the specific
workflow to be executed once a situation is identified. Therefore, the risk identification
component triggers the workflow management, which executes the linked processes. The
workflow component is responsible for checking the information requirements of each alert
target, passing this information to the output handler, which is responsible to transform the
data to EDXL compliant messages semantically enriched. Therefore, the output handler
enables the brokering of notifications of situations detected, following the JSON-LD syntax
and the EDXL structure, which is able to link to the semantics used. A web UI application
shows each alert sent by the EWS with its severity and urgency, and other information,
including the targets that received the notification and the message sent to each target.

The EWS is developed with Node-Red (input and output handlers) and a .NET/C# REST
application that executes (asynchronously) the context data management, the situation
identification manager and the decision support management components (to respond to
situations identified, formatting the messages according to information requirements of the
targets). Table 1 summarizes the involved data.

External Health Logistics

Data Driver’s ECG, accelerometer Position, speed, accelerometer, goods

Device Shimmer (SPINE), Mobile Mobile (MyDriving Android or iOS)

IoT platform MS Azure IoT MS Azure IoT

Ontologies ETSI SAREF4health, HL7 FHIR ETSI SAREF, LogiCO, LogiTrans

Table 40. Data sources.

Validation plan

Validating the achievement of providing effective situation awareness and emergency
response requires a comparison whether the response processes triggered through the
workflow management is adherent to emergency procedures, reflecting pragmatic
interoperability between the EWS and an emergency manager. This will measure whether
the system works for the intended risks’ detection and warning. So, it includes simulation of
the use cases (test cases) with multiple target groups with different information requirements.

The validation plan is organized as

(a) Factory acceptance tests: in a lab environment the EWS will be deployed in a cloud
environment and the components integration will be tested through mock objects; and

(b) Site acceptance tests: a pilot in the port, where accidents will be simulated in accordance
with the port emergency exercises, e.g. vehicle collision through hard breaks,
bradycardia/tachycardia by decreasing the thresholds and adequate response procedures for
accidents with dangerous goods.

The validation plan includes the performance evaluation of data transfer, processing and
storing JSON-LD as payload. Total time to be observed:

(i) for data acquisition;

(ii) to semantically translate a message;

(iii) to syntactically translate a message for the POCO used by the CEP engine;

D6.3: Site Acceptance Test Plan

157

(iii) to process data (from CEP working memory) and process (serialize and deserialize) for
risk identification; and

(iv) to create the alert messages, i.e. serialize the output data as EDXL semantic model.

(v) The brokering performance will be validated in terms of scalability for single cluster and
multi-broker, having the semantic IoT EWS approach [5] as a baseline.

Validating the achievement of semantic interoperability depends on whether the components
of the solution have the same “understanding” of the data. Since the approach is based on
multiple semantic translations, the translation accuracy will be measured to calculate the
semantic interoperability indicator. The accuracy reflects the semantic loss when translating
a message from A to B, which is measured by executing the transformations in sequence
from ontology A (e.g. SAREF) to ontology B (e.g. SSN) and from B to A, i.e. check how x is
different to T(T(x)A>B)B>A, where T(x)A>B represents the semantic translation function from A to
B [12].

This plan includes data management with the FAIR data principles.

3.3.5.1 Integration of INTER-IoT components

The layered approach of INTER-IoT is reflected in Figure 74 (device, network, middleware
and application layers). The scope of our participation in the project, agreed in the beginning
of the collaboration, is twofold: (1) the implementation of an EWS at the INTER-IoT
application level, consuming the data provided by the IoT platforms integrated with INTER-
IoT, and (2) the support on the definition of the semantic alignment (translations) between
W3C SSN/SOSA and ETSI SAREF, the two main standardized IoT ontologies. However,
since the IoT platforms used in the Valencia port case would not be able to provide cardiac
data, required by IIOT-FR2, we gave support in making these data available through our own
e-Health IoT platform, which is built on top of MS Azure IoT and Shimmer3 ECG device.

At the device level, our solution uses (per truck-driver) one Android smartphone and one
Shimmer3 ECG unit. The smartphone device plays the role of a semantic field gateway,
having two apps merged (Shimmer3 Capture Xamarin and MyDriving) and improved with
semantic technologies, as described in section 3.

In the network layer, the ECG device sends data to the smartphone through Bluetooth, using
the Shimmer API. From the smartphone to the cloud, either Wi-Fi or 4G is used for
connectivity.

In the middleware layer, the main component is the MS Azure IoT Hub, a pub/sub
middleware (context broker), which receives data from the smartphone. One IPSM alignment
was built to support the translations between SAREF and SSN/SOSA. Two approaches were
planned:

(1) The EWS consuming data directly from the Azure IoT Hub. In this case the EWS
Input Handler is able to execute the semantic translations through two translation
mechanisms, configured when deploying the EWS: (a) Through “raw” SPARQL; and
(b) using the IPSM REST service. The rationale for these choice is to, at first,
guarantee the execution of the EWS functional tests through (a), which does not
depend on any external component. By implementing (b) the solution is integrated
with INTER-IoT framework and the results can be compared to the results from (a),
demonstrating the pros/cons of each solution.

(2) A bridge MS Azure  INTER-MW, under development by the INTER-IoT consortium,
is responsible to forward the data to INTER-MW and enable the automatic semantic

D6.3: Site Acceptance Test Plan

158

translation of the messages by using the IPSM. The EWS only subscribes to INTER-
MW, asking to receive the data from the IoT Hub.

OBSERVATION: The second approach (2) is not ready (until the writing of this
document). Developing, creating and maintaining an environment of INTER-MW with
Azure IoT bridge are under INTER-IoT consortium responsibility. Therefore, the tests
listed here, using option 2, will only be executed once the environment is ready.

At the application level, the input handler of the EWS, implemented as a flow in Node-Red
server (INTER-IoT), is responsible to subscribe to the topics of INTER-MW that are related to
the data submitted by our IoT solution, receiving these data translated from the middleware
layer (see above). Then, this flow forwards the data to the EWS core processor, which
implements the Context, Situation and Workflow managers by receiving the data through a
REST API deployed in a separate server (either local or in the cloud). This REST API is a
black box for INTER-IoT framework. When a situation is identified, the EWS core processor
publishes the notifications, as EDXL messages, in a service bus. The output handler,
implemented as a flow in INTER-IoT Node-RED, receives these notification messages, filter
them and send to each specific target. The targets and their information requirements, i.e.
the “parts” of the data (classes, object and data properties of the ontologies) that each target
requires for each situation type (risk), are pre-defined. A simple web UI prototype
demonstrates how to list and plot the notifications in a map. This UI is an example showing
how the emergency centre can develop a web app that understands the EDXL messages
and visualize the data.

3.3.5.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test report of the EWS

Applications

2 Shimmer3 API (TinyOS, ECG device)

3 MyDriving-LD: porting of Shimmer Capture (Android app) to MyDriving,
improved with semantic technologies.

4 MyDriving App service (C# REST, app server)

5 INTER-IoT-EWS input/output handlers (C# REST, app server)

6 INTER-IoT-EWS core (C# REST, NESPER, app server(s))

7 INTER-IoT-EWS UI Prototype for Tests Execution

Hardware

8 Shimmer3 ECG unit – should be returned to UT after the execution

9 Android smartphone (Bluetooth) – should be returned to UT after the
execution

Subscriptions – all subscriptions will be cancelled after the tests execution

10 Internet 3G/4G

11 MS Azure: IoT Hub, app servers, DB servers

12 AWS EC2: app servers, DB servers (optional)
Table 41: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

D6.3: Site Acceptance Test Plan

159

ID Description Version Check

IoT Field Gateway (smartphone)

1 Smart semantic gateway 1: Shimmer3 Capture Xamarin V1.0.0

2 Smart semantic gateway 2: MyDriving V1.0.0

IoT Cloud Gateway (context/service) broker

3 MS Azure IoT Hub Subsc.B1

INTER-IoT framework

4 Bridge MS Azure TBD

5 INTER-MW TBD

6 IPSM V0.8.5

IoT EWS (app layer)

7 Input/output handlers: C# REST V1.0.0

8 EWS core processor: C# REST V1.0.0

9 INTER-IoT-EWS UI Prototype for Tests Execution V1.0.0
Table 42: Component version overview

3.3.5.3 Test environment

Introduction

To test the functionality of the integrated <File-Properties-T_PilotName> in combination with
the IoT framework representative test hooks in the system are needed. This chapter will
describe this environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test setups, hooks and probes used in the system used during
this SAT.

In summary, the test environment reflects the deployment components illustrated in Figure 2,
classified by the INTER-IoT framework layers:

- Device: at least 2 devices for each driver: a smartphone, acting as a field gateway (local
broker), and an ECG device, the Shimmer3 ECG unit. The smartphone must be
configured with 2 applications developed by us: Shimmer-LD (health data) and
MyDriving-LD (logistics data).

- IoT platform: Azure IoT platform is used in two ways: (1) for health data, an IoT hub
instance with at least the Azure subscription Basics 1 (B1); (2) for logistics data, an IoT
hub instance – can be the same of #1, depending on the size and number of messages
per day – and the basic services required to run MyDriving app, i.e. a mobile app service
(app server) and a SQL Server database (DB server).

- Middleware: the INTER-MW component is required to subscribe to the IoT hub
instance(s) to receive the messages through a bridge and to forward them to IPSM
component. IPSM is responsible to execute the pre-defined translations (from SAREF to
SSN/SOSA) and provides the data to the application layer.

- Application: the INTER-IoT-EWS system is composed by some subsystems:
o Input handler flow: a Node-RED flow that subscribes to the INTER-IoT

middleware mechanism (INTER-MW/IPSM), performing some validation on the
input data and forwarding it to two REST APIs in parallel: Context Manager and
Situation Identification Manager.

D6.3: Site Acceptance Test Plan

160

o Context Manager: a c#/.NET 4.5.2 core web API (app server) and a NOSQL
database MongoDB (DB server). These services shouldn’t be deployed in the
same server.

o Situation Identification Manager: a c#/.NET 4.5.2 core web API (app server)
running a CEP server (NESPER): http://www.espertech.com/esper/esper-faq/

o Situation Reaction Manager: this application is embedded in the Situation
Identification Manager REST API, thus, deployed along with it. This component
sends the emergency notification messages to a broker in the cloud. Ideally, it
should publish in a way that INTER-MW could access. For testing purposes these
messages will be published in an Azure IoT Hub instance that can be the same
used in the IoT platform level, depending on the number/size of messages and
throughput.

o Output handler flows: Node-RED flow(s) responsible to deliver a message to its
target, e.g. by e-mail or SMS or a cloud broker. The number of flows depend on
the configuration of each test case, in terms of targets and their information
requirements.

o Web UI prototype: a very simple web UI (app server) that plays a role of a target,
showing the emergency notifications in a map.

Figure 75: Deployment components or INTER-IoT-EWS data flow

Test tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Whireshark, developed scripts, etc.

D6.3: Site Acceptance Test Plan

161

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

The Figure 2 illustrates the data flow through the main components of INTER-IoT-EWS,
summarizing the main technologies involved.

The Shimmer3 ECG unit is attached to the driver’s chest (5 electrodes) and sends
frequency-based data (usually 256 or 512Hz), using Shimmer3 API (TinyOS, default
installed), to the smartphone, which requires the ShimmerLD application to receive and
retransmit data. ShimmerLD is able to accumulate the data as time series, format it
according to SAREF4health ontology and send messages in another frequency (e.g. each
5s) to the Azure IoT Hub, using either Internet 3/4G or Wi-Fi.

MyDrivingLD mobile app should also be installed in the smartphone. It is able to transform
the trip (travel) information (e.g. position, acceleration) to Azure IoT Hub, in a
frequency/position manner: e.g. at least at 3 seconds or 5m position shift. Data is formatted
according to SAREF and logistics ontologies (LogiCO, LogiServ, LogiTrans). As default,
MyDriving also communicates with an application service which stores trip data after the trip
is ended (relational data). Optionally, the driver can use an OBD-2 sensor, which MyDriving
app is able to capture more accurate data.

INTER-IoT-EWS receives the data from the Azure IoT Hub by subscribing to the INTER-IoT
middleware, which is responsible to connect to IoT Hub through a bridge and translate the
messages. Two translations (channels) are performed: from SAREF to SSN/SOSA and from
SAREF4health to FHIR RDF. A node in INTER-IoT App level (Node-Red) will enable INTER-
IoT-EWS to receive the translated messages through a flow. This flow forwards the data
asynchronously (in parallel) to the Context Manager and to the Situation Identification
Manager, both REST APIs able to receive IoT messages according to SSN/SOSA, health
data as FHIR RDF and logistics data as the logistics ontologies.

The context manager stores the data as JSON document in a NOSQL database (MongoDB).
These data is further collected by the Situation Reaction component, according to the
information requirements of the targets.

The situation identification manager implements a Complex Event Processing (CEP) server,
implemented with NEsper, which enables processing large volumes of incoming messages
or events, filtering and analyzing events according to the Event Processing Language (EPL)
statements, responding to conditions of interest (situation types) with minimal latency.

When a situation type is identified, e.g. vehicle collision or bradycardia, the situation
identification manager calls the situation reaction component. For each situation type pre-
defined, according to the 5 use cases, is mapped to a set of targets are notified. A default
target is configured, to receive all the related (original) data of the trip through a broker. The
situation reaction component is responsible to manage the brokering plan (situation types x
reaction processes), transforming the output data in EDXL-CAP messages (JSON-LD,
possible linked to the original data). These messages, including the instructions for
brokering, are sent to a flow (Node-Red, INTER-IoT APP), which receives the data as a

D6.3: Site Acceptance Test Plan

162

REST API and performs the brokering actions, e.g. forward the data to a broker or send e-
mails, SMS, etc.

TS_01 EWS basic deployment

- ECG device: 1 Shimmer3 ECG unit
- Smartphone: 1 Android with Bluetooth (Motorola)

o Installed MyDrivingLD
- Cloud gateway (broker): 1 Azure IoT Hub (B1)
- MyDriving other basic services:

o 1 mobile app server
o 1 DB server (SQL Server), 1 DB instance

- Input/output handlers: REST API (C#/.NET): 1 app server
- Context manager:

o REST API (C#/.NET): 1 app server
o 1 DB server (MongoDB), 1 DB instance

- Situation identification and reaction:
o REST API (C#/.NET) with NESPER (CEP): 1 app server

TS_02 EWS deployment with IPSM

Same of TS_01, but instead of executing the semantic translations inside the Input Handler
component, it makes continuous calls to IPSM to translate the data stream published in the
IoT Hub.

- INTER-IoT middleware: IPSM

TS_03 EWS deployment with INTER-MW and IPSM

This setup relies on the MS Azure bridge, which is under construction by the INTER-IoT
consortium. The EWS subscribes to INTER-MW instead of subscribing to IoT Hub and
executing the semantic translations. The idea is that the EWS is decoupled from the specific
IoT platform (Azure IoT). This setup, including the bridge, will be provided and managed by
the INTER-IoT consortium.

- INTER-IoT middleware: bridge Azure, INTER-MW, IPSM

TT_01 INTER-IoT-EWS UI Prototype

This prototype was developed to support the execution of the tests. It can be either used for
input data injection (see TH_01), as well as to subscribe to IoT Hub to simulate how the EWS
consumes the data. In addition, this tool also receives the emergency notification messages
that the EWS produces. Therefore, this tool is used for both FAT and SAT. This application
should be running in debug mode (not deployed) with Visual Studio 2015, taking advantage
of the testing tools provided by the IDE, such as the diagnostics tools for monitoring memory
and CPU usage. Figure below illustrates the prototype:

D6.3: Site Acceptance Test Plan

163

TH_01 Input Data Injection

This hook is used to inject input data for all test cases for the laboratory tests. It simulates the
smartphone publishing data each 3s to the IoT Hub, implemented in TT_01.

TH_02 Raw Data Visualizer

This hook is used to plot the “raw” data published in IoT Hub, useful to check the real-time
data published. It is implemented in TT_01.

TH_03 Thresholds Modifier

This hook is used to change the thresholds to simulate the test cases that cover the use
cases and is implemented through a REST service method. For UC01, threshold of collision
detection can be modified to enable the simulation of vehicle collisions with hard breaks. For
UC02, thresholds regarding bradycardia and tachycardia can be modified to enable the
simulation of heart beat decrease and increase.

TH_04 Informing Dangerous Goods

This hook is used to inform the dangerous goods being transported by the truck, which is
injected within the deployed MyDriving-LD mobile app.

TH_05 Situation Patterns

For more complex situation patterns, such as in UC02 to detect consecutive arrhythmia and
in UC03 to detect arrhythmia after collision, patterns that are considered instances of a STs
will be provided.

D6.3: Site Acceptance Test Plan

164

TH_06 Translation mechanism option

The difference between TS_01 and TS_02 is the way that the translations between SAREF
and SSN/SOSA are executed, either through “raw” SPARQL or through IPSM. The TT_01
enables this option configuration at runtime.

TP_01 Log Semantic Translation

This probe is made of log commands in the solution to compute the processing time of the
semantic translations. In TS_01 and TS_02, the log commands are added in the Input
Handler: before and after each translation. In TS_03, the begin log command is added in a
prototype subscribed to IoT Hub and the end log command is added in the Input Handler,
measuring the total time processing of the bridge, INTER-MW and IPSM together. This probe
supports the measuring of the “burden” that the semantic translation mechanism imposes.

TP_02 Log Syntactic Translation to CEP

This probe is made of log commands in the Situation Identification component (CEP engine
server). The begin log command is added right after the semantic translation and the end log
command is added right after the observations are sent to the CEP working memory.

TP_03 Log Situation Identification

This probe is made of log commands in the Situation Identification and Reaction
components. The begin log command is added right after sending the observations to the
CEP working memory. The end log command is added when the situation is identified, i.e.
the beginning of the situation response.

TP_04 Log Situation Reaction (Decision Support)

This probe is made of log commands in the Situation Reaction component. The begin log
command is added just after the situation is identified and the end log command is added
after the EDXL message is generated.

3.3.5.4 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation. In bold the main requirements addressed with our
solution.

ID Description Covered by

6 Efficiency of the information processing

9 Multi-level data processing support

13 Extensibility

15 Support of common IoT communication protocols All tests

20 Real time support All tests

21 Real time output

23 Device semantic definition All tests

39 Heterogeneous gateway

41 Definable and monitored requirements

42 Heterogeneous information representation T3.*

47 API for third-party developers

51 API for data publication

52 API REST All tests

53 Location of sensor and measurement is included in semantic All tests

D6.3: Site Acceptance Test Plan

165

models

62 Constraints on processing of personal and health data T2.*, T3.*, T4.*

71 Application response time

74 Ontology support All tests

79 Service to manage energy consumption of devices

86 API for proprietary systems interoperate with other systems All tests

96 Enable (automated or semi-automated) linking of relevant data
models

T3.* and T4.*

102 Exchanging complex medical measures across platforms T2.*, T3.*, T4.*

104 Personal data and user profile management

106 Definition of reference meaning for health information

145 Informed consent. Processing of personal data All tests

164 Medical Device informatics T2.*, T3.*, T4.*

178 Inter Platform Semantic Mediator provides data and semantic
interoperability functionality

All tests

179 Inter Platform Semantic Mediator supports platform
communication

All tests

180 Syntactic and semantics interoperability - Data format and
semantics translation

All tests

186 Design of required ontologies All tests

220 Ontology mapping among most prominent standards All tests

224 Location semantic support for mobile smart objects All tests

251 Ability of IoT platforms to coordinate with emergency systems All tests

281 Publish data stream into a platform All tests
Table 43: Requirements vs. test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

9 Accident at the port area All tests
Table 44: Scenario vs test mapping

3.3.5.5 Test description

Scenario: accidents at the port area [id.9]

The functional goal of this scenario is to decrease the risk of fatal accidents at the port of
Valencia, improving health prevention and enabling quick reaction by reducing time
response.

The non-functional goal of this scenario is to exploit how e-Health and e-Care can use IoT
platforms dedicated to logistics to prevent the occurrence of accidents and to support
evacuation or attention in case of emergency situations [2]: “interoperate the wearable
medical devices with IoT platforms to react quickly, thus reducing time responses during
accidents and health prevention” [INTER-IoT deliverable 2.4].

Interoperability in this scenario is required to connect the port authority (including emergency
systems) and the road hauliers IoT platforms.

Each use case will be tested using a vehicle from the port, which test cases will be
simulated.

D6.3: Site Acceptance Test Plan

166

UC01: Vehicle collision detection

Monitor the truck’s location and detect possible collisions (impacts). In general, the
approaches use an accelerometer within the vehicle to collect time series data about its
location, i.e. the device’s acceleration about the corresponding axes (X, Y, Z), allowing the
calculation of the G-Force felt in each instant. Then, for each instant, the detection
mechanism compares if the G-Force is above a certain threshold, which is usually 3G for
devices deployed in the vehicle chassis [16-19]. According to the patent for “vehicle security
with accident notification and embedded driver analytics” (US 9491420 B2) [20], “instances
of high acceleration/deceleration are due to a large change in velocity over a very short
period of time. These speeds are hard to attain if a vehicle is not controlled by a human
driver, which simplifies accident detection since we can assume any instance of high
acceleration constitutes a collision involving human drivers”. An approach using a
smartphone sharing accelerometer data is described in [21]. The Shimmer ECG 3 also
provides an accelerometer sensor, thus, it can also provide acceleration data, which gives an
opportunity to integrate the health and logistics solutions.

For each instant, the sensor sends the data to the mobile application (Shimmer-LD and
MyDriving-LD), which can compute the cross-axial energy function (𝐸𝑡𝑜𝑡 = 𝑥ଶ + 𝑦ଶ + 𝑧ଶ) and
compare to a threshold.

Cross-axial energy function:

𝐸𝑡𝑜𝑡 = 𝑥ଶ + 𝑦ଶ + 𝑧ᇱ ଶ, where x,y,z are axial accelerations measured in m/s2.

𝑧ᇱ = z - 1G.

Threshold:

Common = 4G (4 x gravity), where 1G = 9.806 m/s2.

Rule = If (SquaredRoot(Etot) > Threshold)

If it is above the threshold, then a potential fall is detected.

Classification of severity and urgency according to accelerometer data (A) and threshold (B)
is described in the table below. In summary, if the cross-axial energy computed is greater
than the threshold and less than 20% above the threshold, then it might be a light collision
(minor severity). If it is in-between 20% and 40%, then the collision is greater (moderate
severity), if it is in-between 40% and 60%, then the collision is severe. Above 60%
represents a strong impact, thus, an extreme severity, which probably needs immediate
urgency for emergency response.

Range Severity Urgency
B < A <= B * 1.2 Minor Expected
B * 1.2 < A <= B * 1.4 Moderate Immediate
B * 1.4 < A <= B * 1.6 Severe Immediate
B * 1.6 < A Extreme Immediate

Each test case has an equivalent input and output data file, named TX.Y.json (input and
output folders). The type of all test cases here are system testing using scripted data. Each
test case is executed 5 times to reflect a normal operation situation and each range of
severity/urgency (table above).

D6.3: Site Acceptance Test Plan

167

Each execution will be performed in TS_01, TS_02 and TS_03 (if the INTER-MW
environment is available).

This use case involves these requirements: [23], [72], [180], [249], [251].

For vehicle collision the thresholds will be modified with TH_03 in a way to detect hard
breaks of the vehicle, e.g. when driving inside the port at 50km/h the driver breaks to achieve
20km/h in 5 seconds.

Detected with ECG device accelerometer, computed by smartphone

ID T1.1

Test Vehicle collision with one accelerometer (from Shimmer3 ECG unit) computed
by the mobile application (MyDriving-LD): test ST_UC01_01.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [251]

Input NA.

Output T1.1_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T1.1_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T1.1_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

Detected with ECG device accelerometer, computed by EWS (cloud)

ID T1.2

Test Vehicle collision with one accelerometer (from Shimmer3 ECG unit) computed
by the EWS in the cloud (Situation Identification Manager): test ST_UC01_02.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [251]

Input NA.

Output T1.2_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T1.2_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T1.2_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

168

Detected with smartphone accelerometer, computed by smartphone

ID T1.3

Test Vehicle collision with one accelerometer (from smartphone) computed by the
mobile application (MyDriving-LD): test ST_UC01_03.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

Output T1.3_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T1.3_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T1.3_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

Detected with smartphone accelerometer, computed by EWS (cloud)

ID T1.4

Test Vehicle collision with one accelerometer (from smartphone) computed by the
EWS in the cloud (Situation Identification Manager): test ST_UC01_04.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

Output T1.4_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T1.4_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T1.4_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

169

Detected with ECG device and smartphone accelerometers, computed by EWS
(cloud)

ID T1.5

Test Vehicle collision with two accelerometers (from Shimmer3 ECG unit and
smartphone) computed by the mobile application (MyDriving-LD): test
ST_UC01_05.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [251]

Input NA.

Output T1.5_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T1.5_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T1.5_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

UC02: Hazardous health changes

Detect medical issues with the driver by monitoring his/her ECG and derived heart rate,
checking possible cardiovascular emergencies. Cardiovascular emergencies are life-
threatening disorders that must be recognized as soon as possible to minimize morbidity and
mortality. By allowing the EWS to detect cardiovascular emergencies with trucks’ drivers, it is
possible to reduce the risk of an accident at the port area. The EWS provides messages that
include the information of the cardiovascular emergency situation.

This can be achieved, basically, by using the the INTER-Health IoT solution with Shimmer
ECG device attached to the driver’s chest, wired to electrodes, and an Android-based mobile
phone, both part of the Body module of the BodyCloud approach implemented with the
SPINE framework. Thresholds used by the detection mechanism should be based on
existing classifications to detect health risks. For example, target heart rates used for fitness
is a classification of indicators that can be used as a baseline for thresholds. Figure XX
illustrates such indicators (red, green, yellow, blue) depending on the person’s age. Besides
these thresholds, this use case also considers the situations which the driver presents
bradycardia and tachycardia, which can be detected with the ECG device (event monitor) 18.

Thresholds used by the detection mechanism should be based on existing classifications to
detect health risks, both regarding bradycardia and tachycardia19. In particular, the approach
based on Early Warning Scores [Ref.] should be considered. These scores are illustrated in
table XX, which represents the rules underlying each vital sign scoring function. For example,

18 http://www.mayoclinic.org/diseases-conditions/bradycardia/diagnosis-treatment/diagnosis/dxc-20321665
http://www.mayoclinic.org/diseases-conditions/tachycardia/diagnosis-treatment/diagnosis/dxc-20253919
19http://www.mayoclinic.org/diseases-conditions/bradycardia/diagnosis-treatment/diagnosis/dxc-20321665
http://www.mayoclinic.org/diseases-conditions/tachycardia/diagnosis-treatment/diagnosis/dxc-20253919

D6.3: Site Acceptance Test Plan

170

if the person presents a heart rate of 115bpm, the score for this vital sign is 2. The sum of the
scores represent the person’s health situation. For example, the total score of more than 5 is
statistically linked to the person requiring an intensive care or near-death situation.

Classification of severity and urgency according to ComputeBPM output (A) and the
threshold (B) is described in the table below. In summary, if the BPM calculated is greater
than the threshold and less than threshold more 10%, then it might be a light tachycardia
(minor severity). If it is in-between 10% and 20%, then the tachycardia is greater (moderate
severity), if it is in-between 20% and 30%, then the tachycardia is severe. Greater than 30%
represents a strong tachycardia, thus, an extreme severity, which probably needs immediate
urgency for emergency response.

Range Tachycardia Range Bradycardia Severity Urgency
B < A <= B * 1.1 B * 0.9 < A <= B Minor Expected
B * 1.1 < A <= B * 1.2 B * 0.8 < A <= B * 0.9 Moderate Immediate
B * 1.2 < A <= B * 1.3 B * 0.7 < A <= B * 0.8 Severe Immediate
B * 1.3 < A A <= B * 0.7 Extreme Immediate

Each test case has an equivalent input and output data file, named TX.Y.json (input and
output folders). The type of all test cases here are system testing using scripted data. Each
test case is executed 5 times to reflect a normal operation situation and each range of
severity/urgency (table above).

Each execution will be performed in TS_01, TS_02 and TS_03 (if the INTER-MW
environment is available).

This use case involves these requirements: [23], [72], [180], [249], [251].

For detecting heart arrhythmias and heart attacks (stop beating), simulated data will be
inserted in the application to be used at specific pre-defined timestamps while driving inside
the port.

Bradycardia detected with fixed threshold

ID T2.1

Test From ECG data, the heart rate is calculated and compared to a threshold.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

D6.3: Site Acceptance Test Plan

171

Output T2.1_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T2.1_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T2.1_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

Tachycardia detected with fixed threshold

ID T2.2

Test From ECG data, the heart rate is calculated and compared to a threshold.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [251]

Input NA.

Output T2.2_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T2.2_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T2.2_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

Multiple occurrences of bradycardia detected with fixed threshold

ID T2.3

Test From ECG data, the heart rate is calculated and compared to a threshold.

Type System testing using scripted data

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

Output T2.3_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T2.3_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T2.3_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

172

Multiple occurrences of tachycardia detected with fixed threshold

ID T2.4

Test From ECG data, the heart rate is calculated and compared to a threshold.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

Output T2.4_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T2.4_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T2.4_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

UC03: Temporal relations (UC01 ~ UC02)

This use case exploits the possible temporal relations between UC01 and UC02 for detection
of an accidents in the port area. For example, if a truck collision is detected from the
accelerometers of the medical and mobile devices (T1.3) and right after (e.g. within 1-2
minutes) detecting large variation of heart rate (T2.9) then there is a high probability that a
severe accident occurred, the driver is injured and he/she requires urgent medical help.
Notice that the temporal relationship (“right after”) is crucial to integrate these use cases.

For the temporal relations, a mix of the both above is planned, for example, simulating that
right after (within 30 seconds of) a hard break, simulated data representing a bradycardia is
used by the mobile app.

Vehicle collision followed by bradycardia

ID T3.1

Test Slow heart rate right after (within 2 minutes) a collision is detected can
represent that an accident just occurred and the driver is probably injured.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

Output T3.1_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T3.1_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

D6.3: Site Acceptance Test Plan

173

Logs T3.1_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

Bradycardia followed by vehicle collision

ID T3.2

Test Slow heart rate right before (within 2 minutes) a collision is detected can
represent that an accident occurred because the driver had a cardiac issue.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

Output T3.2_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T3.2_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T3.2_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

UC04: Accident involving dangerous goods

This use case will extend the use cases UC01-03 by checking whether dangerous goods are
being transported, which will increase the situation urgency and severity and include the
dangerous goods classification according to UNECE20. Data test will include simulation of
trips including the transportation of class 1 (explosives), 3 (flammable liquids), 4 (flamed
solids), 6 (toxic and infectious) and 7 (radioactive).

Hard coding the goods being transported with TH_04, re-executing each previews simulation
(UC01-UC03).

UC01 with dangerous goods

ID T4.1

Test Tests of UC01 incremented with a check whether dangerous goods are being
transported.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

20 https://www.unece.org/fileadmin/DAM/trans/danger/publi/unrec/rev17/English/Rev17_Volume1.pdf

D6.3: Site Acceptance Test Plan

174

Output T4.1_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T4.1_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T4.1_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

UC02 with dangerous goods

ID T4.2

Test Tests of UC02 incremented with a check whether dangerous goods are being
transported.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

Output T4.2_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T4.2_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T4.2_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

UC03 with dangerous goods

ID T4.3

Test Tests of UC03 incremented with a check whether dangerous goods are being
transported.

Type System testing

Setup TS_01, TS_02, TS_03*, TT_01, TH_03, TP_01-04

Start Vehicle is stopped in one of the port gates (entering the port area). MyDriving-
LD app is running and receiving streaming data from ECG device. Click on
button “start trip” and wait the info menu appear on the top.

Req. [180], [249], [251]

Input NA.

Output T4.3_output/Execution_[TS_XX_YYMMDDhhmm]/IoTHubData/*.json: health
and logistics messages
T4.3_output/Execution_[TS_XX_YYMMDDhhmm]/Emergency/*.json:
emergency messages

Logs T4.3_output/Execution_[TS_XX_YYMMDDhhmm]

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

175

3.3.5.6 Test outcome

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T1.1 Vehicle collision with one accelerometer (from Shimmer3 ECG unit)
computed by the mobile application (MyDriving-LD): test ST_UC01_01

Pass / Fail

T1.2 Vehicle collision with one accelerometer (from Shimmer3 ECG unit)
computed by the EWS in the cloud (Situation Identification Manager):
test ST_UC01_02

Pass / Fail

T1.3 Vehicle collision with one accelerometer (from smartphone) computed
by the mobile application (MyDriving-LD): test ST_UC01_03

Pass / Fail

T1.4 Vehicle collision with one accelerometer (from smartphone) computed
by the EWS in the cloud (Situation Identification Manager): test
ST_UC01_04

Pass / Fail

T1.5 Vehicle collision with two accelerometers (from Shimmer3 ECG unit and
smartphone) computed by the mobile application (MyDriving-LD): test
ST_UC01_05

Pass / Fail

T2.1 From ECG data, the heart rate is calculated and compared to a
threshold

Pass / Fail

T2.2 From ECG data, the heart rate is calculated and compared to a
threshold

Pass / Fail

T2.3 From ECG data, the heart rate is calculated and compared to a
threshold

Pass / Fail

T2.4 From ECG data, the heart rate is calculated and compared to a
threshold

Pass / Fail

T3.1 Slow heart rate right after (within 2 minutes) a collision is detected can
represent that an accident just occurred and the driver is probably
injured

Pass / Fail

T3.2 Slow heart rate right before (within 2 minutes) a collision is detected can
represent that an accident occurred because the driver had a cardiac
issue

Pass / Fail

T4.1 Tests of UC01 incremented with a check whether dangerous goods are
being transported

Pass / Fail

T4.2 Tests of UC02 incremented with a check whether dangerous goods are
being transported

Pass / Fail

T4.3 Tests of UC03 incremented with a check whether dangerous goods are
being transported

Pass / Fail

SAT Outcome Pass / Fail
Table 45: Test outcome overview

D6.3: Site Acceptance Test Plan

176

3.3.5.7 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

Early Warning System

Once our collaboration offers the monitoring of ECG data, there is an extreme concern
regarding the management of sensitive/private end user data and ethical issues. Our
platform follows the guidelines of “Microsoft Azure and data compliance for designing secure
health solutions”. Azure services are compliant to several industry applications, including
HIPPA compliance for healthcare solutions, the EU Data Protection Directive 95/46/EC (the
privacy standard for processing personal data from EU member states) as well as the recent
2016/679 directive.

Key principles are implemented in our solution, such as identity and authentication, role-
based access control, certificate acquisition and management and user data encryption
when required. Complete control of the data is achieved with the support of an information
security management system, configuring a secure IoT Hub and selecting the region that
best meets compliance needs, as the Germany or the Netherlands or North European sites.
These principles are aligned to the H2020 ethical self-assessment following the specific rules
about cardiac data.

As a foundation for the use of our IoT platform, our research provides support to apply the
FAIR data principles for data management of the project development and the data
stewardship of the solution. We emphasize the “A” aspect of FAIR to deal with the sensitive
data management issue, applying authentication and authorization procedures from the
device to the network, middleware and service levels. Our solution uses data and metadata
retrievable by their identifier, which are based on open standardized communication protocol.
Finally, we have experience with FAIR-based data management plans, as the H2020
template, and we plan to store the project data in the INTER-IoT data repository, which is
aligned to H2020 and, therefore, with FAIR. In particular, we will follow the data management
plan of INTER-IoT (http://www.INTER-IoT-project.eu/wp-
content/uploads/2016/02/D8.4_INTER-IoT_Data_Management_Plan.pdf), giving emphasis to
the classification of sensitive data according to the table of protection levels (section 2.3.
Other data), classifying ECG data as “Protection level 2”.

In preparing, collecting and analyzing the sensitive data, we will comply with ethical
principles and international, European and national regulations including the Code of Ethics
for Research that was developed by the Association of Universities in the Netherlands
(VSNU). The code prescribes that the data will only be used for research purposes and
individual persons may never be traceable in publications reporting on the research. Drivers
participating in the pilot will be provided with an Informed Consent (by signing a Personal
Consent Form) before involving them. In preparing our data collection using individual
persons, we will always ask for consent of participation with the guarantee that participants
are always free to leave the investigation without consequences or need to give any
explanation. Considering that the research will involve people from Spain, the Personal
Consent Form will be written in English and Spanish, provided by the port Authority. The
researchers have already considered issues related to informed consent including: ethics
sensitivity, issues of insurance and incidental findings.

The basic content of the Personal Consent Form will consist in:

D6.3: Site Acceptance Test Plan

177

• describing the aims, methods and implications of the research, the nature of the
participation and any benefits, risks or discomfort that might ensue

• informing the participants about their rights

• state how data will be collected, protected during the project and either destroyed or reused
subsequently

• state what procedures will be implemented in the event of unexpected or incidental findings
(in particular, whether the participants have the right to know, or not to know, about any such
findings).

D6.3: Site Acceptance Test Plan

178

 Third Party: Senshook

The port of Valencia is one of the most important hubs in the world and thus a critical point of
entry of invasive species that must be monitored, according to the European Centre of
Disease Control.

The pilot will consist on deploying an observation static IoT node in a critical point of the port
of Valencia.

The node is composed of a Smart Mosquito Trap capable of mimicking the human body
(scent and respiration) and of automatically counting captured mosquitoes, identify the
gender and the species. The information collected by each node is then sent to a server.

The pilot will start with preliminary tests in the zoo of Barcelona in May-June 2018 and will
last until October 2018. This corresponds exactly with the period of the year when disease-
vector mosquitoes are active and must be monitored.

Following is a diagram that gives a high-level overview of the system. When a mosquito
enters the trap it gets detected by the sensor.

The sensor is connected to a Senscape board which sends the information to the server
running SensHook and the virtual gateway.

The middleware platform can then retrieve the gathered information.

Figure 76: Network Architecture

Objectives of the project

The specific objectives of the project are to:

 Perform a technical feasibility assessment of the SensHook solutions as part of the
INTER-IoT project

 Implement SensHook according to INTER-IoT requirements
 Carry out a series of tests/pilots to evaluate the performance and benefits of the tool.

Collaboration approach

Irideon will contribute to the INTER-IoT project by providing a new open tool for the INTER-
LAYER building block, which will allow the evolution of products based on INTER-IoT, but at
the same time will allow us to evolve our products in order to add new interoperability
features.

D6.3: Site Acceptance Test Plan

179

By contributing to the development of INTER-IoT, Irideon will be able to address new IoT
scenarios in which different IoT platforms, apart from those based on Senscape, are
involved, and also in those in which more than one application domain is addressed.

SensHook Arquitecture Overview

The system consists of the SensHook software that integrates with the INTER-IoT virtual
gateway which provides connection to the middleware platform.

Below you can see an overview of the architecture:

Figure 77: System architecture

Following is a description of the different components of the gateway.

Dispatcher

One of the central parts of SensHook is the dispatcher, it consists of a communication layer
which connects to the hardware via TCP/UDP and a service layer which implements the
IEEE 1451 standard.

IEEE 1451 is a set of smart transducer interface standards developed by the IIEEE.

D6.3: Site Acceptance Test Plan

180

Irideon has developed a specific lightweight implementation of this standard for the
Senscape hardware devices.

This implementation includes communication protocols, TEDS and common functions.

The dispatcher is implemented in two OSGi bundles:

 Dispatcher API bundle: This bundle defines and exports the interface.
 Dispatcher provider bundle: This bundle implements the service layer, which includes the

IEEE 1451 standard and the communication layer with the MQTT connector. Furthermore
it registers a service with the dispatcher API.

Virtual Gateway Connector

This is the other central part of SensHook. It processes the petitions of the virtual gateway
coming from the middleware platform. The virtual gateway connector consists of the three
bundles:

 Virtual gateway connector API bundle: This bundle defines the OSGi interface for the
bundle and exports it as a package.

 Virtual gateway connector provider bundle: This bundle implements the virtual gateway
connector and provides it as an OSGi service with the virtual gateway connector API.

 Virtual gateway connector application bundle: This bundle consumes the service
published by the provider and implements an application that exposes an API. This API is
used to interface with the virtual gateway.

Measure Storage

The measure storage has two bundles:

 Measure storage API Bundle: This bundle defines the interface for the bundle and
exports it as a package.

 Measure storage provider bundle: This bundle provides the connection to a local
database to store and retrieve the values sent and requested by the dispatcher. This
bundle implements the interface defined by the API bundle and registers it as a service.

API

This component provides an API to the dispatcher which serves as an interface to interact
with the Senscape hardware.

It consists of one bundle which is an OSGi application that consumes the service offered by
the dispatcher.

System interfaces

SensHook offers interfaces to two of its components, the virtual gateway connector and the
dispatcher.

Dispatcher

The dispatcher comes with two interfaces:

 Terminal interface: This interface features an Apache Felix Gogo Shell. It is thought for
debugging.

 OSGi interface: The component registers an OSGi service API which can be used to
incorporate the dispatcher in a modular OSGi application.

D6.3: Site Acceptance Test Plan

181

Virtual Gateway Connector

The virtual gateway connector comes with three interfaces:

 Terminal interface: This interface features a gogo shell. It is thought for debugging.
 OSGi interface: The component registers an OSGi service API which can be used to

incorporate the virtual gateway connector in a modular OSGi application.
 API: The virtual gateway connector also offers an API through an OSGi application

following the OSGi enRoute model, so it is possible to communicate with the component
and having a runtime environment.

3.3.6.1 Integration of IoT framework

SensHook integrates with the IoT framework through the INTER-IoT virtual gateway.
SensHook comes with a component called virtual gateway connector that offers an API for
the incoming petitions from the middleware platform through the virtual gateway. On the
other hand the virtual gateway connector uses methods of the virtual gateway to send
information to the middleware platform.

API of the virtual gateway connector

This API is used by the INTER-IoT virtual gateway to send petitions to SensHook.

Method: sendDeviceRequestMessage

This method is used to send request information about devices from SensHook. It receives a
string parameter which defines the type of request. These types and their functions are
detailed in the following table:

Function Parameters Description

List devices String “list-devices” This request returns a list of
devices registered in
SensHook.

Get information about a
device.

String “get-device”, Int
deviceId

This request returns
information about the device
(trap or sensor) with ID
deviceID.

Read data from device String “read-device”, Int
deviceId

This request reads data from
the device with ID deviceID.

Methods of the virtual gateway

In the following table, we describe the methods of virtual gateway used by the virtual
gateway connector.

Method Parameters Description Example

new Device() - Constructor for a
new device object.
In this case a device
is a mosquito trap.

Device trap_01 = new Device();

Device.setUuid() String
containing UUID
of the device

This sets the UUID
of the device.

trap_01.setUuid("01");

Device.setName String This sets the name Trap_01.setName("SmartTrap_

D6.3: Site Acceptance Test Plan

182

()

containing
name of the
device

of the device. 02");

new DeviceIO()

device type,
device name,
device data type

Constructor for a
new IO device. This
can be a sensor or
an actuator.

DeviceIO tempSensor = new
DeviceIO(DeviceIO.Type.SENS
OR, "temperature",
Attribute.Type.FLOAT);

Device.addDevi
ceIO()

An instance of
DeviceIO

This method adds
an IO device to a
device. In this case
a sensor to a
mosquito trap.

trap_01.addDeviceIO(tempSens
or)

New
Measurement()

- Constructor for a
new measurement
object. This will be
used to send data
from sensors.

Measurement measurement =
new Measurement();

Measurement.se
tValue();

Name of the
sensor, data
type, data value

Sets the value of a
mesurement.

measurement.setValue(new
Attribute("temperature",
Attribute.Type.FLOAT), 14.5);

Testing

As described in chapter 7 and 8, we use Postman and some HTTP requests to the
middleware platform to do some integration testing.

In the following screenshot you can see an example of the request “Get all entities” to the
middleware platform.

Figure 78: Integration test

D6.3: Site Acceptance Test Plan

183

3.3.6.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 SAT Document

Hardware

2 Senscape Mosquito Trap

3 Computer running the Senshook bundles, INTER-IoT VGW, Docker with
middleware, InfluxDB

Tools

4 Eclipse

5 JUnit

6 Postman

7 InfluxDB
Table 46: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

IoT Virtual Gateway

1 Dispatcher API Bundle V1.0.0

2 Dispatcher Provider Bundle V1.0.0

3 Dispatcher Application Bundle V1.0.0

4 Measure Storage API Bundle V1.0.0

5 Measure Storage Provider Bundle V1.0.0

6 Virtual Gateway Connector API Bundle V1.0.0

7 Virtual Gateway Connector Provider Bundle V1.0.0

8 Virtual Gateway Connector Application Bundle V1.0.0
Table 47: Component version overview

3.3.6.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

11 Addressability and reachability T15.1.1, T15.1.4

15 Common IoT communication protocols must be
supported.

T15.1.5, T15.2.9

47 API for third-party developers 15.2.7., 15.2.8

57 Device monitoring and self-awareness of the system T15.1.6, T15.2.1, T15.2.2,
T15.2.3, T15.2.4, T15.2.5,
T15.2.6, T15.2.7, T15.2.8,

D6.3: Site Acceptance Test Plan

184

T15.2.10

284 Standard protocol for the device communications T15.1.1

110 Usability T15.1.1, T15.1.2, T15.1.3,
T15.1.4, T15.1.5, T15.2.1,
T15.2.2, T15.2.3, T15.2.4,
T15.2.5, T15.2.6, T15.2.7,
T15.2.8, T15.2.9

123 Use of standards T15.1.1

154 Time stamped event recording T15.1.6, T15.2.10

265 API allows device declaration and configuration 15.1.2, 15.1.3, 15.1.4

266 API allows resources/capabilities discovery T15.2.1, T15.2.2, T15.2.3,
T15.2.4, T15.2.5, T15.2.6,
T15.2.7, T15.2.8

273 Stores system status for recovery T15.2.1, T15.2.2, T15.2.3,
T15.2.4, T15.1.6, T15.2.5,
T15.2.6, T15.2.7, T15.2.8,
T15.2.10

283 Manage a sensor or actuator T15.1.1, T15.1.2, T15.1.3,
T15.1.4, T15.2.1, T15.2.2,
T15.2.3, T15.2.4, T15.2.5,
T15.2.6, T15.2.7, T15.2.8

Table 48: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

15 Surveillance systems for prevention programs T15.2.7, 15.2.8, 15.2.9
Table 49: Scenario vs test mapping

3.3.6.4 Test environment

Introduction

To test the functionality of the integrated SensHook in combination with the IoT framework
representative test hooks in the system are needed. This chapter will describe this
environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test environment and the complete system setup used during
this SAT.

Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

D6.3: Site Acceptance Test Plan

185

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Unit Test Setup

The unit testing used for testing the Java/OSGI API is done with the IDE Eclipse and the
framework JUnit.

TS_02 InfluxDB Test setup

For the InfluxDB testing we open a terminal and start the influx application. This gives us a
prompt from which we can issue commands to the databases.

TS_03 Postman test setup

To test the integration with the middleware platform and virtual gateway we use Postman and
a call to the middleware platform to retrieve status updates from it. Below you can see a
diagram of the test setup:

Figure 79: Test setup

D6.3: Site Acceptance Test Plan

186

TT_01 JUnit

JUnit is a framework for unit testing in Java, it will be used for the testing of the Java/OSGI
API tests.

TT_02 Eclipse

Eclipse is an IDE widely used for developing in Java.

TT_03 Postman

Postman is a free API development environment. It offers the option to write complete tests
for a REST API, so we use it to do the integration testing with the middleware platform as
they communicate via HTTP.

TT_04 InfluxDB

We use the console of InfluxDB to perform some tests. The Influx database is designed for
times series which makes it well suited for monitoring and analytics.

TH_01 JUnit test script

For the unit tests the JUnit test script is responsible for setting up the context of the different
tests.

TH_02 Postman test method

For the virtual gateway and middleware platform integration tests the Postman test method is
responsible for setting up the context.

TP_01 JUnit test script

For the unit tests the JUnit test script is responsible for giving the feedback of the test results.

TP_02 Postman test method

For the virtual gateway and middleware platform integration tests the Postman test method is
responsible giving the feedback of the test results.

3.3.6.5 Test description

Scenario 15 Surveillance systems for prevention programs

Non-native species cost the EU €12 billion per year in damage and control costs. In the last
decades several species of disease carrying mosquitoes have invaded Europe through the
transport of goods, increasing international travel and climate change.

SensHook will reduce inspection costs and improves surveillance programs. With our new
electronic trap, we will be the first in the world to combine human mimicking with automatic
pest information in their value proposition. This allows a whole new population of consumers
to establish surveillance programs that were only accessible to those with significant
resources.

The demonstration of the Senshook architecture will be based on JAVA bundles that makes
up the software. SensHook is designed to enable bi-directional communication between the
middleware platform and itself and between the middleware and traps. SensHook is
developed for receiving data from the traps in the field, and the database architecture is

D6.3: Site Acceptance Test Plan

187

defined for the storage of data gathered by the traps. This software module will be able to
read data received from the field and store it in the system database.

Connecting and detecting devices

T15.1.1 Device identification at dispatcher component junit test

ID T15.1.1

Test Device identification at dispatcher component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [11], [284], [110], [123], [283]

Input Execute Junit test ‘testGetTrap’

Outcome Pass / Fail

T15.1.2 Trap generation at storage component junit test

ID T15.1.2

Test Trap generation at storage component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [110], [265], [283]

Input Execute Junit test ‘testMakeGetTrap’

Outcome Pass / Fail

T15.1.3 Sensor generation at storage component junit test

ID T15.1.3

Test Sensor generation at storage component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [110], [265], [283]

Input Execute Junit test ‘testGetMakeSensor’

Outcome Pass / Fail

T15.1.4 Trap registration at storage component junit test

ID T15.1.4

Test Trap registration at storage component junit test

Type System Testing

D6.3: Site Acceptance Test Plan

188

Setup TT_02, TT_03, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [11], [110], [265], [283]

Input Execute Junit test ‘testGetMakeSensor’

Outcome Pass / Fail

T15.1.5 Trap registration at middleware platform

ID T15.1.5

Test Trap registration at middleware platform

Type System Testing

Setup TT_02, TT_03, TS_03, TH_02, TP_02

Start InfluxDB, VGW, middleware platform, Postman running

Req. [15], [110]

Input Register a new trap
Execute Postman call ‘Get All Entities’

Output Registered devices of the middleware platform

Outcome Pass / Fail

T15.1.6 Trap registration at influxDB

ID T15.1.6

Test Trap registration at influxDB

Type System Testing

Setup TT_02, TT_04, TS_02

Start InfluxDB, VGW, middleware platform running

Req. [57], [154], [273]

Input Register a new trap
Open influx application
Execute query “SELECT * FROM trap”

Output Registered traps

Outcome Pass / Fail

Obtain information about connected sensors and traps

Information about the connected sensors to the different Senscape devices is retrieved.
Senscape implements the IEEE 1451.4 Transducer Electronic Data Sheets (TEDS)
standard. Besides the ability to retrieve detailed information about the connected sensors it
also provides plug and play functionality for sensors.

D6.3: Site Acceptance Test Plan

189

15.2.1 Trap information retrieval at dispatcher component junit test

ID T15.2.1

Test Trap information retrieval at dispatcher component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [57], [110], [266], [273], [283]

Input Execute Junit test ‘testGetTrap’

Outcome Pass / Fail

15.2.2 Trap list retrieval at dispatcher component junit test

ID T15.2.2

Test Trap list retrieval at dispatcher component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [57], [110], [266], [273], [283]

Input Execute Junit test ‘testTrapList’

Outcome Pass / Fail

15.2.3 Sensor list retrieval at dispatcher component junit test

ID T15.2.3

Test Sensor list retrieval at dispatcher component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [57], [110], [266], [273], [283]

Input Execute Junit test ‘testSensorList’

Outcome Pass / Fail

15.2.4 Trap information retrieval at storage component junit test

ID T15.2.4

Test Trap information retrieval at storage component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [57], [110], [266], [273], [283]

D6.3: Site Acceptance Test Plan

190

Input Execute Junit test ‘testMakeGetTrap’

Outcome Pass / Fail

15.2.5 Trap list retrieval at storage component junit test

ID T15.2.5

Test Trap list retrieval at storage component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [57], [110], [266], [273], [283]

Input Execute Junit test ‘testGetTrapList’

Outcome Pass / Fail

15.2.6 Sensor list retrieval at storage component junit test

ID T15.2.6

Test Sensor list retrieval at storage component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [57], [110], [266], [273], [283]

Input Execute Junit test ‘testGetMakeSensor’

Output Pass / Fail

15.2.7 Trap information retrieval at virtual gateway connector component junit
test

ID T15.2.7

Test Trap retrieval at virtual gateway connector component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [47], [57], [110], [266], [273], [283]

Input Execute Junit test ‘testGetCompleteTrap’

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

191

15.2.8 Trap list retrieval at virtual gateway connector component junit test

ID T15.2.8

Test Trap list retrieval at virtual gateway connector component junit test

Type System Testing

Setup TT_01, TT_02, TS_01, TH_01, TP_01

Start InfluxDB, VGW, middleware platform running

Req. [47], [57], [110], [266], [273], [283]

Input Execute Junit test ‘testGetCompleteTraps’

Outcome Pass / Fail

T15.2.9 Measurement registration at middleware platform

ID T15.2.9

Test Trap registration at middleware platform

Type System Testing

Setup TT_02, TT_03, TS_03, TH_02, TP_02

Start InfluxDB, VGW, middleware platform running

Req. [15], [110]

Input Connect a trap with new measurements
Execute Postman call ‘Get All Entities’

Output Registered measurement of the middleware platform

Outcome Pass / Fail

T15.2.10 Measurement registration at influxDB

ID T15.2.10

Test Measurement registration at influxDB

Type System Testing

Setup TT_02, TT_04, TS_02

Start InfluxDB, VGW, middleware platform running

Req. [57], [154], [273]

Input Register a new trap
Open influx application
Execute query “SELECT * FROM sensor”

Output Registered measurements

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

192

3.3.6.6 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T15.1.1 Device identification at dispatcher component junit test Pass / Fail

T15.1.2 Trap generation at storage component junit test Pass / Fail

T15.1.3 Sensor generation at storage component junit test Pass / Fail

T15.1.4 Trap registration at storage component junit test Pass / Fail

T15.1.5 Trap registration at middleware platform Pass / Fail

T15.1.6 Trap registration at influxDB Pass / Fail

T15.2.1 Trap information retrieval at dispatcher component junit test Pass / Fail

T15.2.2 Trap list retrieval at dispatcher component junit test Pass / Fail

T15.2.3 Sensor list retrieval at dispatcher component junit test Pass / Fail

T15.2.4 Trap information retrieval at storage component junit test Pass / Fail

T15.2.5 Trap list retrieval at storage component junit test Pass / Fail

T15.2.6 Sensor list retrieval at storage component junit test Pass / Fail

T15.2.7 Trap retrieval at virtual gateway connector component junit test Pass / Fail

T15.2.8 Trap list retrieval at virtual gateway connector component junit test Pass / Fail

T15.2.9 Trap registration at middleware platform Pass / Fail

T15.2.10 Measurement registration at influxDB Pass / Fail

SAT Outcome Pass / Fail
Table 50: Test outcome overview

3.3.6.7 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

SensHook

There are at least 3,528 species of mosquitoes. The majority are harmless to humans, but a
few dozen species transmit diseases. SensHook addresses the major problem of disease-
carrying Invasive Mosquito Species (IMS) that invade Europe due to climate change. The
most threatening is the Asian Tiger Mosquito (Aedes albopictus), a vector that can transmit
several serious and life threatening diseases.

D6.3: Site Acceptance Test Plan

193

 Third Party: SOFOS

The imminent arrival of the Internet of Things (IoT), which consists of a vast variety of
devices with heterogeneous characteristics, means that future networks need a new
architecture to accommodate end-to-end IoT networking, dealing with: i) the expected
increase in data generation, ii) the problems related to the end-to-end IP networking of the
resource-constrained IoT devices, iii) the capacity mismatch between devices, and iv) the
rapid interaction between services and infrastructure.

Software defined networking (SDN) and network function virtualization (NFV) are two
technologies that promise to cost-effectively provide the scale and versatility necessary for
IoT services in order to address efficiently the aforementioned challenges. Moreover, given
that SDN and NFV are considered a fundamental component in the 5G landscape, since it is
widely recognized that 5G networks will be software-driven and most components of future
heterogeneous 5G architectures should be capable to support software-network
technologies, both SDN and NFV are promising candidate technologies for a Software
Defined Approach of end-to-end IoT Networking.

Figure 80: The proposed SDN/NFV end-to-end IoT Gateway overview

SOFOS aims at advancing the existing INTER-IoT framework with SDN and NFV
functionalities towards a Software-defined end-to-end IoT infrastructure with IoT service
chaining support. The main objective of the proposed SDN/NFV-enabled framework is to
enhance the interoperability of the INTER-IoT framework in order to facilitate the
interoperable management of a large number of diverse smart objects that currently operate
utilizing a variety of different IoT protocols.

In this framework, specific objectives of the proposal include:
 To add SDN/NFV Automation and Verification in IoT Infrastructure
 To relocate various IoT functions from HW appliances to Virtual Machines (VMs)

(i.e. Virtual Network Functions - VNFs).
 To enhance the interoperability support of the INTER-IoT platform by deploying

VNFs that map IoT protocols (such as CoAP, MQTT) to standard IP networking
 To connect and chain the software-defined IoT functions (i.e. VNFs) together.
 To abstract the IoT’s control plane by exploiting the SDN concept and advances.
 INTER-IoT Infrastructure with the proposed advances can be enhanced by means of

NFV with integration of SDN, making it more agile and introducing a high degree of
automation in service delivery and operation—from dynamic IoT service parameter
exposure and negotiation to resource allocation, service fulfilment, and assurance.

D6.3: Site Acceptance Test Plan

194

3.3.7.1 Integration of IoT framework

SOFOS experiment considers that INFOLYSiS will deploy on top of INTER-IoT vGW
modules that provide SDN/NFV Automation in IoT Infrastructure, such as the INFOLYSiS
SDN/NFV Network Manager. By applying appropriate OPENFLOW commands, INFOLYSiS
add-on will steer the data traffic from the INTER-IoT vGW to the various VNFs that will have
been deployed in order to enhance the interoperability functions of INTER-IoT, allowing to
the application layer to represent the received data in a unified way.

Figure 81: SOFOS Integration and Factory test setup overview.

Thus, with the mapping VNFs provided by INFOLYSiS and the support of the SDN/NFV
techniques, the data provided by Raspberry and panStamp are mapped to a common
protocol (e.g. HTTP). For the instantiation of the virtual functions, an SDN-compatible (i.e.
OpenFlow compliant) cloud computing platform is considered at the MW layer for enterprise
users, such as the Docker approach of the INTER-IoT framework.

The container-based topology of the Factory test setup overview, is depicted in the following
figure, where each box represents a container on top of the Docker-based virtualization.

D6.3: Site Acceptance Test Plan

195

Figure 82: SOFOS Integration and Factory test setup logical topology.

The IoT node generators for the factory setup (i.e. httpgen1/2, mqttgen1/2, coapgen1/2) will
be based on data provided by Raspberry and panStamp units of the INTER-IoT platform or
other HW-based IoT nodes that will be available by INTER-IoT system during the early
integration phase.

Figure 83: Collaboration approach SDN/NFV infrastructure in INTER-IoT architecture

SOFOS experiment considers that INFOLYSiS will deploy the necessary mapping VNFs (i.e.
proxies) on the top of the relevant virtual INTER-IoT GWs. The necessity for the SDN
management on top of each testbed it is depicted in the Figure 2, where it is shown that
without the proposed SOFOS SDN/NFV-based IoT system, the IoT nodes forwards the data
traffic directly to the respective IoT GW, which is not capable to understand the different
protocols and therefore communication is not achieved. With SOFOS SDN/NFV-based IoT
system, by applying appropriate OPENFLOW commands via the SDN Controller, the data
traffic from the IoT nodes will be routed (1) to the SDN-node/switch, then (2) will be
diverted/routed/steered by the SDN switch of the testbed (due to appropriate Openflow
commands/programming) towards the mapping function in order to be translated to the
“interoperable” protocol (e.g. HTTP in the example) and (3) then (once it has been
translated) will be further forwarded/routed back to the SDN switch and finally (4) from there
to the original destination i.e. the IoT vGW.

D6.3: Site Acceptance Test Plan

196

Figure 84: Detailed approach of SDN applicability on top of INTER-IoT

3.3.7.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components

2 Validation and Test reports of the Pilot system components

Hardware

3 UDP port GW of the INTER-IoT

Tools

4 OpenVPN

5 TCPDUMP

6 OVS-OFCTL – SDN flows monitoring tool

7 BMON – Bandwidth monitoring in interfaces

8 DOCKER STATS – Resource usage of docker containers

Table 51: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

IoT Physical Gateway

1 AN Controller V1.0.3

IoT Virtual Gateway

3 Fiware V4.2.3

4 Docker

5 Ubuntu

UniversAAL container

6 UniversAAL REST API V3.2.1
Table 52: Component version overview

D6.3: Site Acceptance Test Plan

197

3.3.7.3 Requirements, scenarios and use cases

S1 - Accident at the port area: Fire, Explosion, Extreme weather conditions

This scenario considers an emergency situation that happens at the port and is related to
incidents related to fire, explosion and/or extreme weather conditions. The implementation
and use of the SDN paradigm by SOFOS will speed up IoT connections, provide
interoperability among different IoT devices and centralize the management at the port
domain. Moreover, the SDN applicability will allow the prioritization of IoT data flows using
traffic engineering, achieving a general overview of the whole network at any time. SOFOS
pilot will provide at the first responders’ commander, who will coordinate the
emergency/rescue teams, a unified view of IoT data visualisation. More specifically, the
proposed SDN/NFV-enabled IoT GW will be used to provide interoperability between port IoT
systems on the different locations with the coordination center at the port with scope to
provide a common unified view of the accident, its type and the location of the available
rescue teams. For this purpose, a virtual mapping function that implements an existing
interoperability standards commonly used in information systems will be deployed by the
SDN/NFV orchestrator, offering interoperable and continuous data transmission, allowing to
the coordinator to allocate at each available rescue unit the appropriate incident, degree of
severity and its location.

Interoperability in this scenario is required to connect IoT devices providing IoT port data
related to: fire (using temperature, humidity data), explosion (using noise, temperature, wind
data) and also about extreme weather conditions (using weather related data such as wind
speed, wind direction, pressure, rain, humidity etc): .

The resulting service will be obtained by the integration of:

- the historical data from the port IoT platform and port IoT sensors
- SOFOS SDN-based interoperable vGW

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

2 Scalability. Design T6, T7, T8, T9

13 Extensibility T6, T7, T8, T9

15 Support of common IoT communication protocols T1, T2, T3, T4

21 Real time output T1, T2, T3, T4, T7, T8, T9

27 System security T5

28 System privacy T5

70 Easy-to-use user interface T4, T7, T8, T9

78 Automatic and dynamic selection of communication protocol T1, T2, T3

95 Robustness, resilience and availability T6

229 SDN capabilities T1, T2, T3, T4, T6, T7, T8, T9

231 Network function virtualization T1, T2, T3, T4, T6, T7, T8, T9

244 Gateway virtualization T4, T5, T6

281 Publish data stream into a platform T5, T7, T8, T9
 Table 53: Requirements vs. test mapping

D6.3: Site Acceptance Test Plan

198

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

9.1 Accident at the port area - Fire T1, T2, T3, T4, T5, T6, T7

9.2 Accident at the port area - Explosion T1, T2, T3, T4, T5, T6, T8

9.3 Accident at the port area - Extreme weather conditions T1, T2, T3, T4, T5, T6, T9
 Table 54: Scenario vs test mapping

3.3.7.4 Test environment

Introduction

To test the functionality of the SOFOS in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test setups, hooks and probes used in the system used during
this SAT.

Test tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

Test setup

The following topology refers to the test setup that will be used for verifying the SOFOS
solution. The IP addresses of the figure refer to the ones that have been already used for
testing at INFOLYSiS testbed environment. Appropriate ones will be used, while the IoT
nodes/emulators that are currently used for testing will be replaced by actual HW-based IoT
nodes provided by INTER-IoT ecosystem. INFOLYSIS Automated Alarm System (IAAS) will
detect and communicate to INTER-IoT GWs the port emergency incidents as per the
scenarios IDs 9.1, 9.2 and 9.3.

D6.3: Site Acceptance Test Plan

199

Figure 85: Test setup of SOFOS solution.

Test tools

Below are described the four test tools that are used for the SOFOS SAT.

TT_01 Test tool TCPDUMP

TCPDUMP - Packet sniffers can be used for verifying the IoT protocols that are entering to
the SOFOS systems and the ones that are translated when are existing the system.

TT_02 Test tool OVS-OFCTL

OVS-OFCTL – SDN flows monitoring tool

TT_03 Test tool BMON

BMON – Bandwidth monitoring in interfaces

TT_04 Test tool DOCKER STATS

DOCKER STATS – Resource usage of Docker containers

Test probes

TP_01 Test probe INFOLYSiS IoT vGW

INFOLYSiS IoT vGW provides a detailed monitoring interface, which shows in real time the
data that are translated by the mapping functions

TP_02 Test probe INFOLYSiS VNFs

VNFs mapping functions translating data of various IoT protocols (CoAP, MQTT, HTTP) to
generic UDP streams, proving that the system is handling the scenario as it should.

3.3.7.5 Test description

SOFOS SAT scenario considers an emergency situation that happens at the port and is
related to emergency incidents related to fire, explosion and/or extreme weather conditions
(Scenario IDs 9.1, 9.2 and 9.3).

D6.3: Site Acceptance Test Plan

200

In specific, real data are provided by the port IoT sensors related to temperature values,
sound values and wind. These data are fetched to INFOLYSiS IoT protocol
generators/aggregators (MQTT, CoAP, HTTP) and then to INFOLYSiS VNFs mapping
functions in order to be translated into UDP streams and achieve IoT interoperability before
publishing them in real time to the INTER-IoT platform under UDP protocol.

As a real word case scenario, INFOLYSiS IoT vGW analyzes the received port data and
notifies INTER-IoT platform in a unified way (interoperability achieved by the provision of the
processed data under UDP protocol) for emergency cases of fire, explosion and/or extreme
weather conditions that are taking place at the port. Please find below the details of the
planned SAT test.

T1-SOFOS Interoperability and Port Emergency Alarms for Scenario IDs 9.1, 9.2 and
9.3

ID T1

Test Real Port Sensors data testing and identification of Emergency incidents

Type IoT Interoperability and Port Sensor Data testing

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP port sensor data (temperature, sound, wind etc)

Output Alarm of emergency incidents

Logs Logs in dedicated folder

Outcome Pass / Fail

Within the framework of the SOFOS SAT planning and initial testing, 3 main categories of
tests have been performed:

 SOFOS Infrastructure readiness and sensitivity tests
 Emergency detection tests (Scenario IDs 9.1, 9.2, 9.3)
 SOFOS Add-on features and SOFOS Components failure tests

SOFOS Infrastructure readiness and sensitivity tests

In total 7 tests were performed as part of this SOFOS SAT category of technical level tests in
order to verify the readiness of SOFOS infrastructure before proceeding to the port use case
scenarios testing (alarms for port emergency cases as per scenarios IDs 9.1, 9.2 and 9.3).
Please find below the details of each performed test along with its outcome:

T1

Test MQTT mapping to UDP-based real port data

Type VNF testing using real port data

Setup MQTT generator, MQTT mapping VNF, Infolysis IoT GW, OpenVSwitch

D6.3: Site Acceptance Test Plan

201

Start MQTT generator produces and sends data

Req. [15],[21],[78],[229],[231]

Input Real port MQTT sensor data

Output UDP-based real port sensor data

Outcome Pass / Fail

T2

Test CoAP mapping to UDP-based real port data

Type VNF testing using real port data

Setup CoAP generator, CoAP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start CoAP generator produces and sends data

Req. [15],[21],[78],[229],[231]

Input Real port CoAP sensor data

Output UDP-based real port sensor data

Outcome Pass / Fail

T3

Test HTTP mapping to UDP-based real port data

Type VNF testing using real port data

Setup HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start HTTP generator produces and sends data

Req. [15],[21],[78],[229],[231]

Input Real port HTTP sensor data

Output UDP-based real port sensor data

Outcome Pass / Fail

T4

Test Real time monitoring from INFOLYSiS IoT GW

Type System testing using real port data

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [15],[21],[70],[229],[231],[244]

Input MQTT, CoAP, HTTP real port sensor data

Output Real time graphs of port sensor data in INFOLYSiS IoT GW

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

202

T5

Test Real time publishing of real port data in INTER-IOT platform with UDP

Type Integration testing using real port data

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start UDP data arrive at INFOLYSiS IoT GW

Req. [27],[28],[244],[281]

Input UDP-based real port sensor data

Output Successful delivery of UDP messages to INTER-IoT platform

Outcome Pass / Fail

T6

Test Handling more than one data flows from each protocol

Type System testing using real port data

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[229],[231],[244]

Input MQTT, CoAP, HTTP port sensor data

Output Real time UDP port sensor data in INFOLYSiS IoT GW

Outcome Pass / Fail

T7

Test Sensitivity testing to define the threshold values per data type
(temperature, sound, wind) above which emergency alarms should be
triggered

Type Sensitivity testing – Alert values defined – Real port data are used

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[229],[231],[244]

Input MQTT, CoAP, HTTP real port sensor data

Output Threshold values above which alarm is created

Outcome Pass / Fail

Emergency detection tests

In total 3 tests were performed as part of this SOFOS SAT category of tests in order to
indicate the cases at which the provided port sensors real data are above the set limits of T7

D6.3: Site Acceptance Test Plan

203

and an alarm should be communicated to INTER-IoT platform denoting emergency cases of
fire, explosion, extreme weather conditions. Please find below the details of each performed
test along with its outcome. Real port data have been used which for the purpose of the tests
have been modified accordingly in order alarms to be triggered:

T8

Test Identifying fire from real port sensor data (Scenario ID 9.1)

Type Temperature Port Sensor data testing

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP port temperature sensor data

Output Alarm of fire since values above set thresholds have been identified

Outcome Pass / Fail

T9

Test Identifying explosions from real port sensor data (Scenario ID 9.2)

Type Sound Port Sensor data testing

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP port sound sensor data

Output Alarm of explosion since values above set thresholds have been identified

Outcome Pass / Fail

T10

Test Identifying extreme weather conditions from real port sensor data
(Scenario ID 9.3)

Type Wind port Sensor data testing

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP port wind sensor data

Output Alarm of extreme weather conditions since values above set thresholds have
been identified

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

204

SOFOS Add-on features and SOFOS components failure tests

In order to verify the functionality of additional features of the SOFOS solution, 6 extra tests
were performed in order to verify add-on features (such as Disable alarm options and No
Port Data received cases).

These add-on features are also useful for cases at which a component of SOFOS system
fails (mapping VNFs or INFOLYSIS IoT vGW failure) and actions should be taken in order
the system to keep up functioning efficiently (eg disable the faulty component) or alarms
need to be triggered for the occurring malfunctions.

In particular, tests T11-T13 refer to cases in which due to faulty sensors functionality or faulty
received data which may trigger continuously false alarms or simply because we want the
system to offer this add-on feature (shutting down an alarm), we test malfunction incidents
where we can disable on demand specific functionalities/alarms (eg disable fire alarm etc)
and the rest system keeps up running.

Similarly, in T14, we test the case where due to an unexpected reason (faulty sensors, break
of communication, power failure etc), no data are received or no data are processed by the
INFOLYSiS VNFs and/or IoT vGW. Again in this case we trigger a warning/alarm that no
data are received/processed by SOFOS system.

Finally, tests T15-T16 refer to potential malfunction cases of SOFOS mapping VNFs or
SOFOS IoT vGW and the corresponding warnings/alarms that should be triggered to the
INFOLYSIS Management GUI in order corrective actions (eg contingency plans) to be taken
immediately into force.

T11

Test Disable fire alarm

Type Temperature Port Sensor data testing and inactivation of fire alarm notifications

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP port temperature sensor data

Output Alarm of fire is not triggered although corresponding data may exist

Outcome Pass / Fail

T12

Test Disable explosion alarm

Type Sound Port Sensor data testing and inactivation of explosion alarm
notifications

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping
VNF, HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP port sound sensor data

D6.3: Site Acceptance Test Plan

205

Output Alarm of explosion is not triggered although corresponding data may exist

Outcome Pass / Fail

T13

Test Disable extreme weather conditions alarm

Type Port Sensor data testing and inactivation of extreme weather conditions alarm
notifications

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP port wind sensor data

Output Alarm of extreme weather conditions is not triggered although corresponding
data may exist

Outcome Pass / Fail

T14

Test Identifying cases where no port data are received by INFOLYSiS IoT vGW

Type Port Sensors data, SOFOS VNFs, and INFOLYSIS IoT vGW data testing –
Lack of data/Communication Error

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP real port sensor data

Output Alarm of no port data received for an X defined period of time

Outcome Pass / Fail

T15

Test Identifying cases where SOFOS mapping VNFs malfunction and do not
provide UDP processed data to INFOLYSIS IoT vGW

Type SOFOS mapping VNFs malfunction testing – Lack of UPD data from specific
VNF(s)

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP real port sensor data

Output Alarm of no UDP data received from X SOFOS mapping VNF

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

206

T16

Test Identifying cases where INFOLYSIS IoT vGW malfunctions and cannot
produce appropriate output for the INTER-IoT system

Type INFOLYSIS IoT vGW malfunction testing – Error processing/output

Setup MQTT generator, MQTT mapping VNF, CoAP generator, CoAP mapping VNF,
HTTP generator, HTTP mapping VNF, Infolysis IoT GW, OpenVSwitch

Start MQTT, CoAP and HTTP generators produce and send data

Req. [2],[13],[21],[70],[229],[231],[281]

Input MQTT, CoAP, HTTP real port sensor data

Output Master Alarm of not appropriate operation of INFOLYSIS IoT vGW

Outcome Pass / Fail

3.3.7.6 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

The following table will provide an overview of the test result of all the performed tests.

Test Description Outcome

T1 MQTT mapping to UDP-based real port data Pass / Fail

T2 CoAP mapping to UDP-based real port data Pass / Fail

T3 HTTP mapping to UDP-based real port data Pass / Fail

T4 Real time monitoring from INFOLYSiS IoT GW Pass / Fail

T5 Real time publishing of port data in INTER-IOT platform with UDP Pass / Fail

T6 Handling more than one data flows from each protocol Pass / Fail

T7 Sensitivity testing to define the threshold values per data type
(temperature, sound, wind) above which emergency alarms should
be triggered

Pass / Fail

T8 Identifying fire from real port sensor data Pass / Fail

T9 Identifying explosions from real port sensor data Pass / Fail

T10 Identifying extreme weather conditions from real port sensor data Pass / Fail

T11 Disable fire alarm Pass / Fail

T12 Disable explosion alarm Pass / Fail

T13 Disable extreme weather conditions alarm Pass / Fail

T14 Identifying cases where no port data are received by INFOLYSiS
IoT vGW

Pass / Fail

T15 Identifying cases where SOFOS mapping VNFs malfunction and do
not provide UDP processed data to INFOLYSIS IoT vGW

Pass / Fail

T16 Identifying cases where INFOLYSIS IoT vGW malfunctions and
cannot produce appropriate output for the INTER-IoT system

Pass / Fail

 SAT Outcome Pass / Fail
Table 55: Test outcome overview

D6.3: Site Acceptance Test Plan

207

3.3.7.7 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

SOFOS will give prompt attention to any ethical issues that may arise as a result of project
activities, and will address them in a professional way following established and upcoming
EU regulations and the corresponding national laws about data protection, digital and
property rights issues and protection of minors very closely.

SOFOS

Since the port IoT sensors are available by INTER-IoT project for SOFOS, then the
execution of SOFOS experiment involves no human participants. In general, human
participants are not involved and therefore Ethics/Privacy aspects are not considered.

If by any case, human participants are indirectly involved or affected, established procedures
will be followed that respect all pertinent laws (Directive 95/46/EC and General Data
Protection Regulation) and ethics standards, in particular related to contacting individuals,
providing comprehensive and clear information about the objectives of the conducted
research and the use of the collected data, obtaining their consent and not sharing any of the
collected personal data with third parties.

The precise documentation that will be communicated to users participating in the pilot
studies/case studies, if human participation is requested, will be made available and will be
included as appendices to the final deliverable.

D6.3: Site Acceptance Test Plan

208

 Third Party: ACHILLES

Access control and endpoint authentication in the IoT is a challenging problem. Things are
usually small devices with limited storage capacity, power, energy, and processing
capabilities, in order to be inexpensive and practical. In many cases Things are “exposed” to
tampering, whereas in many application scenarios, after Things are deployed, it is not easy
to access them. Things usually are not able to perform “heavy” tasks, such as complex
cryptographic operations. Storing user credentials or any other sensitive information in a
Thing creates security risks, adds storage overhead, and makes security management an
impossible task. When it comes to interoperable applications, Things (or even gateways)
cannot interpret complex business roles and processes. Moreover, companies are not willing
to share sensitive information about their users with a Thing (or a gateway), even if this
information is required by an access control mechanism, neither do they want to invest in yet
another security system.

The ACHILLES project overcomes these limitations by allowing the delegation of security
operations to a third party, referred to as the Access Control Provider (ACP), which can be
implemented by a trusted separate entity, or even the service provider itself. The ACHILLES
concept is depicted in Figure 1.

Figure 86: The concept of the ACHILLES project

The main idea of the ACHILLES concept is that IoT service providers store access control
policies in ACPs and in return ACPs generate secret keys which are stored in Things (steps
1-2). These keys are generated, during a setup phase, using a secure hash with input the
Thing identifier. Additionally, Things are configured with pointers (e.g., a URL that points to
an ACP and a particular file) to the access control policies that protect sensitive resources
(step 3). Every time a client requests access to a protected resource (step 4) the Thing uses
a secure hash function to generate a session key (step 5). The secret key used by that
function is the key generated by the ACP and the hash inputs are: (a) the pointer to the
policy that protects the resource and (b) a random nonce. The Thing transmits the nonce and
the pointer to the client (step 6), which in return requests authorization from the appropriate
ACP (over a secure channel) (step 7). The ACP has all the necessary information required to
calculate the session key: if the client is authorized, the ACP calculates the session key and
transmits it back to the client (step 8). Providing that: (i) the Thing has not lied about its
identity and (ii) the messages exchanged between the client and the Thing have not been
modified, the Thing and the client end up sharing a secret key. This key can be used for
securing subsequent communications (e.g., by using DTLS).

ACP

Thing

(1) Policy, Thing Identifier

(2) Secret key

(3) Secret key,
 pointer to policy

Client

 (4) Unauthorized request

(6) Nonce, pointer to policy
(5) Calculate session key

(7) Authorization request for
policy, nonce

(8) Session key

Service provider

D6.3: Site Acceptance Test Plan

209

Testing system

Our testing system is illustrated in Figure 2. This system is more advanced compared to the
system used for the FATs.

Figure 87: Testing system.

This system represents the use case of a “smart port”. In this use case, port employees want
to access information provided by Things embedded in a container, through an INTER-IoT
gateway. Container owners want to make sure that only port employees can access this
information. On the other hand, the port authority does not want to give access to its user
management system. In order to overcome this problem, the port authority creates an access
control policy in its ACP and receives back a URI to this policy; then it sends this URI to
container owners (Steps 1-3). Each container owner “registers” the available resources to the
ACP and receives back a secret key which is installed in the INTER-IoT gateway (steps 4-6).
This key, which is only used for generating session keys, should be kept protected; in case of
a breach this setup process should be repeated. With these the “setup” phase is completed.
A port employee initially sends an “unauthorized request” and receives back a token and the
URI of the policy that protects the desired resource (steps 7,8). Then the employee
authenticates him/herself and obtains a session key (steps 9,10). The GW has also
calculated the same key, which can then be used for retrieving securely the desired resource
(steps 11-13). In the following we provide more technical details related to each phase of our
system.

System entities

Our system considers the following entities: Gateways (GW), resource owners, resource
clients, authorities, and Access Control Providers (ACPs). The goal of a resource owner is to
provide a resource only to clients authorized by an authority, using an authenticated GW,
over a secured communication channel. Access to a resource is regulated by an access
control policy. Each access control policy is stored in an ACP and maps the authority-specific
identification data of a client to a Boolean output (true, false) and to a policy specific identifier
referred to as IDclient. The length of IDclient is 16 bits, limiting the number of users that can be

D6.3: Site Acceptance Test Plan

210

managed by an access control policy to 216. When the output of an access control policy is
true, the client is considered authorized. Ideally, an access control policy should not be
GW/resource specific, for example, an access control policy may output “true” for any
employee of a particular company, this way access control policies become re-usable.

Although by design ACPs and resource owners are two distinct entities, in reality there can
be cases where these roles are held by the same real world entity.

System setup

In the following we assume that each resource is identified by a pair of identifiers, namely
URIhost and URIpath. For example, a resource name could be company1.iot/temperature
where company1.iot is the URIhost and temperature is the URIpath.

Our system assumes an out-of-band and secured setup phase. During this phase, each ACP
generates and securely stores a Root Secret Key (RSK). In addition, access control policies
are created and stored in ACPs by authorities. For each policy, a Uniform Resource Identifier
(URI) is generated. These URIs are of the form “ACP location/access control policy name”.
A policy URI, henceforth denoted as URIpolicy, may be used by many resource owners: a
resource owner does not have to be aware of the rules and the implementation details of an
access control policy; the only information that a resource owner needs in order to protect a
resource is a URIpolicy.

Every resource owner that wants to use a policy to protect an URIhost issues a secret key
request to an ACP. The ACP uses a secure HMAC and the RSK to compute a secret key.
This secret key, denoted as SKacp,host, is computed simply by hashing URIhost using the HMAC
function and the RSK as the hash function key. The computed secret key is then securely
delivered to the resource owner. Then, the resource owner configures the appropriated GW
with URIpolicy and SKacp,host. Hence, each GW maintains an Access Table that contains tuples
of the form [URIhost, URIpolicy, SKacp,host].

Figure 3 illustrates the system setup phase (ACP's RSK generation is omitted). In the
illustrated example, an access control policy (Policy1) is installed in an ACP by an authority.
Then, a resource owner requests a secret key for the compnay1.iot URIhost, the ACP
generates this key (that is, SKACP,company1.iot) by using its RSK and an HMAC, and sends it
back to the resource owner. Finally, the resource owner configures the GW with the
appropriate information.

Figure 88: The setup phase.

D6.3: Site Acceptance Test Plan

211

It should be noted here that this phase takes place out-of-band and all operations are
secured.

Non-authorized request

A client wishing to access a resource stored at URIhost initially sends a non-authorized
request to the GW. A non-authorized request is transmitted unprotected, i.e., it is transmitted
over an unprotected communication channel, hence 3rd parties can view it, even modify it. A
non-authorized request includes the URIhost and a random number. Upon receiving a non-
authorized request, a GW retrieves URIpolicy and SKacp,host from the Access Table and
generates a token. A token is a (public) variable unique among all sessions of that specific
Thing. Then, the GW updates a “Connections Table” that contains tuples of the form
[Connection Id, Expire, Parameters] where Connection Id an identifier for that connection (for
example, client's IP address and port), Expires is the expiration time of the token, and
parameters are the client’s random number, URIhost, and URIpolicy. Finally, the GW responds
to the client with the URIpolicy and the token. Figure 4 illustrates a non-authorized request. In
this example, the client requests a resource stored at company1.iot. The GW generates a
token, and responds to the client with ACP/Policy1 (found in the Access Table) and the token

Figure 89: Non-authorized request

Client authentication and authorization

Upon receiving the GW’s response, a client sends an authentication request to the
appropriate ACP, which is found using the URIpolicy. The semantics of this request, which is
transmitted over a secure communication channel, are ACP specific. This request must
contain the URIpolicy, and the token received from the Thing, as well as, the URIhost and the
client’s random number included in the non-authorized request.

The ACP should authenticate the client, examine if he abides by the access control policy.If
this is true, the ACP retrieves SKacp,host (this is the key generated during the setup phase)
and uses it as key to an HMAC function with inputs URIpolicy, IDclient, the token, and the client’s
random number. We refer to the output of this function as the ACP generated session key.
Finally, the ACP securely transmits the ACP generated session key and the IDclient back to
the client.

D6.3: Site Acceptance Test Plan

212

Final phase

Upon receiving the ACP generated session key and the IDclient back, the client sends the
IDclient to the GW. Then, the GW uses SKacp,host and an HMAC to hash URIpolicy, IDclient, the
token, and the client’s random number. The hash output is referred to as the GW generated
session key. GW and ACP generated keys match (hence we will refer to them simply as
session keys) if the following conditions hold:

 The GW really knows SKacp,host (hence it is authorized by the resource owner to offer
the resource in question)

 No transmitted parameters have been modified.

Figure 5 illustrates an example of the client authentication and authorization, and finals
phases. In this example, in which it is assumed that the phases illustrated in Figs. 3 and 4
have taken place, the client sends her identification in an ACP along with the URIhost she
wants to access and the random number included in the non-authorized request, as well as
the URIpolicy, and the token she received from the GW. The ACP first performs client
authentication, by examining the identification data and then client authorization, by
examining if the client is authorized to access the resource in question. If both checks are
correct, the ACP computes an HMAC with the appropriate input and sends the result back to
the client.

Figure 90: Client authentication and authorization, and final phases.

D6.3: Site Acceptance Test Plan

213

Security considerations

Providing that secret keys are protected, the proposed solution offers protection against
tampering, eavesdroppers, as well as against man-in-the-middle attacks. Moreover, the key
generation process guarantees that Things are authorized to host a resource, as well as that
users are authorized to access it. For a thorough analysis of the security and privacy
properties of our solution interested readers are referred to “N. Fotiou, et. al, “Access Control
for the Internet of Things”, Proc. of the International Workshop on Secure Internet of Things
2016”.

Secret key breach

The setup phase described previously does not consider the case of a secret key breach. If a
SKacp,host is revealed then all already deployed keys must be updated. For this reason, we
propose the use of a counter per URIhost that should be maintained by the ACP. The
counter will be used as an input to the hash function that generates the SKacp,host and it
will be incremented every time this key has to be updated. Clients and Things do not have to
be aware of this counter.

3.3.8.1 Integration of IoT framework

The following figure illustrates how ACHILLES has been integrated with the INTE-IoT
framework.

Figure 91: ACHILLES-INTER-IoT integration

An instance of the INTER-IoT GW has been installed at the location “iot-gw.mmlab.edu.gr”.
The virtual part of the GW has been extended to include ACHILLES API (as it can be seen
form the figure below).

D6.3: Site Acceptance Test Plan

214

Figure 92: ACHILLES API as a component of the virtual GW

This extension implements ACHILLES functionality and configuration files, and it is able to
perform read and write calls to an (unmodified) emulated physical device provided by the IoT
framework.

Furthermore, a Java client (Figure 8) is able to communicate with the INTER-IoT gateway, as
well as interact with an ACP located at the location “acp.mmlab.edu.gr”.

Figure 93: ACHILLES Client

D6.3: Site Acceptance Test Plan

215

3.3.8.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components

2 Validation and Test reports of the Pilot system components

3

Tools

7 Wireshark
Table 56: Deliverable checklist

The following table shows the software components and version of which the system release
version 2.0 consists of.

ID Description Version Check

IoT Physical Gateway

1 Logging VX.X.X

2 Emulated device VX.X.X

IoT Virtual Gateway

3 Virtual Gateway API

ACHILLES

4 ACP V2.0.0

5 ACHILLES Client V2.0.0

6 GW Module V2.0.0
Table 57: Component version overview.

3.3.8.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

Architecture

2 Scalability. Design Τ1.1.1, Τ2.1.1

6 Efficiency of the processing of information Τ1.1.1, Τ2.1.1

Communications

14 Platform independent Τ1.2.2, Τ2.2.2

15 Common IoT communication protocols must be supported. Τ1.2.2, Τ2.2.2

Functionality

11 Addressability and reachability Τ1.1.1, Τ2.1.1

22 Unique identifier Τ1.1.1, Τ2.1.1

API

243 Gateway access API Τ1.1.1, Τ2.1.1

Interoperability

13 Extensibility T2.1.2

Legality

76 Interoperability between things from different
administrative/management domains

Τ2.2.2

Performance

D6.3: Site Acceptance Test Plan

216

72 Communication should be done using protocols that are
efficient in terms of amount of exchanged information over
message size

Τ1.2.2, Τ2.2.2

Security

27 System security T 1.2.1, T 2.2.1, Τ3.1.1,
Τ3.2.1, Τ3.2.2

28 System privacy Τ3.1.1, Τ3.2.1, Τ3.2.2

95 Robustness, resilience and availability Τ3.1.1, Τ3.2.1, Τ3.2.2

98 Data provenance Τ1.1.1, Τ2.1.1
Table 58: Requirements vs test mapping.

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

1 IoT Data sharing T1.1.1, T1.2.1, T1.2.2

2 B2B Services T2.1.1, T2.2.1, T2.2.2

3 System under attack T3.1.1, T3.2.1, T3.2.2
Table 59: Scenario vs. test mapping.

3.3.8.4 Test environment

Introduction

To test the functionality of the ACHILLES project in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

Our testing environment is composed of the following components:

 A virtual machine that includes the following INTER-IoT GW
o An INTER-IoT virtual gateway that includes ACHILLES components (running

at iot-gw.mmlab.edu.gr)
o An INTER-IoT physical gateway, connected to an emulated device

 A Java-based client
 An ACP hosted at acp.mmlab.edu.gr

Test setups, tools, hooks and probes

TS_01 Test setup 1

This setup is used by all tests that involve a single ACP. During this setup the ACP is
configured with username-password pairs. Moreover, the ACP generates and securely
stores a Master Secret Key (MSK). In addition, access control policies are created and
stored in ACPs, and a Uniform Resource Identifier (URI) for each policy is generated. The
ACP uses a secure HMAC and the MSK to calculate a secret key as follows: SKacp,GW =
HMACMSK(IDGW). The calculated SK is then configured to the GW. Finally, each CoAP client
is configured with an ACP username and password as well as with the URI of the desired
resources.

D6.3: Site Acceptance Test Plan

217

TT_01 Packet sniffer

In order to visualize the exchanged messages, we will use the Wireshark network sniffer.

TH_01 Test configurator

This hook is used for configuring the ACP with the appropriate parameters, as well as for
injecting into the INTER-IoT GW the generated secret keys and proper configuration files.
The configuration files contain entries related to the available CoAP resources.

TH_02 Session re-player

This hook is used for replaying requests from authorized users with or without modifications
and it is used for testing the security properties of the system.

TP_01 GW Dumper

This probe will output all state related to ACHILLES maintained by the INTER-IoT GW. This
includes configuration files, access control tables, as well as Token Tables. Test description

3.3.8.5 Test description

S1 - IoT data sharing

The objective of this scenario is to enable a resource owner to share measurement data with
other authorized users. In this scenario resource owners have Things they own connected to
an INTER-IoT GW. These Things perform various measurements. Measurements are
grouped based on the Thing location and can be accessed in real-time using the appropriate
resource URIs (e.g., http://iot-gw.mmlab.edu.gr:8080/t01). Resource owners define access
control policies in the ACP (e.g., “Friends”, “Family”) and define in the GW the access control
policy that protects each group of measurements (e.g., “t01 can be accessed by Friends”).

 U1: New measurement group creation

The resource owner creates a new group of measurements and registers them in the GW,
providing at the same time a pointer to the access control policy that protects them.

T1.1.1 New measurement group creation

ID T1.1.1

Test Registration of a new group of measurements

Type System testing

Setup Needs setup TS_01

Start Access Table in GW is empty

Req. [2],[6],[11],[22],[243],[98]

Input Resource owner invokes the resource registration API call

Output Access Table is updated

Logs Folder “T1_Output”, prefix “T1.1.1_achilles” >

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

218

U2: User request

A user is interested in a receiving a measurement protected under a specific access control
policy. The user performs an initial request (an unauthorized request) to learn all information
required for authorization. Then, it authenticates himself in the appropriate ACP and obtains
an authorization token. The latter is used for performing an authorized request.

T1.2.1 Unauthorized request

ID T1.2.1

Test Request from an unauthorized user for a protected resource

Type System Testing

Setup Needs setup TS_01

Start Access Table contains some entries

Req. [27]

Input A request from an unauthorized user

Output ● Check if the resource is included in the Access Table
● Generate session key
● Generate token
● Respond to the user with the ACP URI and the token

Logs Folder “T1_Output”, prefix “T1.2.1_achilles” >

Outcome Pass / Fail

T1.2.2 Authorized request

ID T1.2.2

Test Request from an authorized user for a protected resource

Type System Testing

Setup Needs setup TS_01

Start Access Table and Token Table contains some entries

Req. [14],[15],[72],[76]

Input A request from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Perform a read/write operation to the appropriate device
● Encrypt the response and send it back to the user

Logs Folder “T1_Output”, prefix “T1.2.2_achilles” >

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

219

S2 - B2B services

The objective of this scenario is to enable protected resources for multiple groups of
authorized users belonging to diverse administrative domains. In this a scenario, a resource
owner owns actuators connected to an INTER-IoT GW. These actuators can accept. Various
stakeholders define access control policies in their corresponding ACP (e.g., “Employees”,
“Managers”). Moreover, the resource owner defines in the GW the access control policies
that protect each operation (e.g., “switch1 can be turned on by the “Employees” of the
company that has business relationships with ACP A, or the “Employees” of the company
that has business relationships with ACP B).

For this scenario, a replicated instance of our ACP is running at the location
acp2.mmlab.edu.gr

 U1: New operation creation and management

The resource owner defines an operation that can be performed on an actuator and provides
pointers to the policies that protect this operation. Moreover, later on, the resource owner can
modify the list of the pointers to policies by adding or removing a pointer.

T2.1.1 New operation registration

ID T2.1.1

Test Registration of a new resource protected by multiple policies

Type System testing

Setup Needs setup TS_02

Start Access Table in GW is empty

Req. [2],[6],[11],[22],[243],[98]

Input Resource owner invokes the resource registration API call

Output Access Table is updated

Logs Folder “T1_Output”, prefix “T2.1.1_achilles” >

Outcome Pass / Fail

T2.1.2 List of policies modification

ID T2.1.2

Test Add or remove a pointer to an access control policy

Type System testing

Setup Needs setup TS_02

Start Access Table in GW has some entries

Req. [13]

Input Resource owner invokes the resource registration API call

Output Access Table is modified

Logs Folder “T1_Output”, prefix “T2.1.2_achilles” >

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

220

U2: User request

A user is interested in triggering an actuator protected by some access control policies. The
user performs an initial request (an unauthorized request) to learn all information required for
authorization. Then it authenticates himself in the appropriate ACP and obtains an
authorization token. The latter is used for performing an authorized request.

T2.2.1 Unauthorized request

ID T2.2.1

Test Request from an unauthorized user for a protected actuator

Type System Testing

Setup Needs setup TS_02

Start Access Table contains some entries

Req. [27]

Input A request from an unauthorized user

Output ● Check if the resource is included in the Access Table
● Generate session key
● Generate token
● Respond to the user with the ACP URIs and the token

Logs Folder “T1_Output”, prefix “T2.2.1_achilles” >

Outcome Pass / Fail

T2.2.2 Authorized request

ID T2.2.2

Test Request from an authorized user for a protected resource

Type System Testing

Setup Needs setup TS_02

Start Access Table and Token Table contains some entries

Req. [14],[15],[72],[76]

Input A request from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Perform a read/write operation to the appropriate device
● Encrypt the response and send it back to the user

Logs Folder “T1_Output”, prefix “T2.2.1_achilles” >

Outcome Pass / Fail

S3 - System under attack

The objective of this scenario is to evaluate the security of the integrated platform in the
presence of malicious users.

U1-New sessions

An attacker is able to capture and record successful sessions. He then replays the messages
in order to gain access to a protected resource.

D6.3: Site Acceptance Test Plan

221

T3.1.1 Replay attack

ID T3.1.1

Test Emulate an attacker that repeats captured sessions

Type Security Test

Setup Needs setup TS_01 or TS_02 and Test hook 1

Start Access Table and Token Table contains some entries

Req. [27],[28],[95]

Input A request that appears from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Reply with an error

Logs Folder “T1_Output”, prefix “T3.1.1_achilles” >>

Outcome Pass / Fail

U2-Tampering with existing sessions

An attacker is able to intercept the communication between an authorized user and a Thing.
His goal is to modify the transmitted packets in way that will give him access to protected
resources.

T3.2.1 Packet modification attack

ID T3.2.1

Test Emulate an attacker that modifies transmitted packets

Type Security Test

Setup Needs setup TS_01 or TS_02 and Test hook 1

Start Access Table and Token Table contains some entries

Req. [27],[28],[95]

Input A CoAP request that appears to be from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Reply with an error

Logs Folder “T1_Output”, prefix “T3.2.1_achilles” >>

Outcome Pass / Fail

T3.2.2 Man-in-the-middle attack

ID T3.2.2

Test Emulate an attackers that perform man-in-the-middle attack

Type Security Test

Setup Needs setup TS_01 or TS_02 and Test hook 1

Start Access Table and Token Table contains some entries

Input A CoAP request that appears to be from an authorized user

Output ● Check if the resource is included in the Access Table

D6.3: Site Acceptance Test Plan

222

● Check if the Token is included in the Token Table and it is still valid
● Reply with an error

Logs Folder “T1_Output”, prefix “T3.2.2_achilles” >>

Outcome Pass / Fail

3.3.8.6 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T1.1.1 New measurement group creation Pass / Fail

T1.2.1 Unauthorized request Pass / Fail

T1.2.2 Authorized request Pass / Fail

T2.1.1 New operation registration Pass / Fail

T2.1.2 List of policies modification Pass / Fail

T2.2.1 Unauthorized request Pass / Fail

T2.2.2 Authorized request Pass / Fail

T3.1.1 Replay attack Pass / Fail

T3.2.1 Packet modification attack Pass / Fail

T3.2.2 Man-in-the-middle attack Pass / Fail

SAT Outcome Pass / Fail
Table 60: Test outcome overview

3.3.8.7 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

ACHILLES

The site acceptance plan presented in this document does not raise any ethical issue, since
the data that will be used during the tests will be artificially created and will not affect any real
entity. Moreover, all experiments will be conducted in a closed system that does not interact
with the external world, hence no concerns should be raised. When it comes to the actual
deployment of ACHILLES, various risks should be taken into consideration. ACHILLES ACPs
may have access to sensitive user information, including user names, passwords, and
access control policies. Moreover, ACHILLES ACPs may have access to the “seed” used by
the Things to generate session secret keys. For these reasons, a security incident handling
plan should be considered.

D6.3: Site Acceptance Test Plan

223

 Third Party: Inter-HINC

The conceptual design of INTER-HINC is described in INTER-HINC D2 and in related
papers21. It will be updated in the final INTER-HINC D3. Figure 94 describes key
components, without internal details, for SAT plan. Three parts of INTER-HINC:

 Resource Slice Interoperability Hub (rsiHub): includes services, software artifacts
and algorithms to ensure resource slice interoperability.

 Pizza-CLI: is the client CLI including various features for the user to perform tasks for
interoperability with resource slices.

 External ResourceProviders: including those from third parties, those integrating
INTER-IoT existing components and those newly developed for the INTER-IoT
project.

The main services within the architecture are:

 rsiHub LocalService: to interface to IoT, network function and cloud providers.
 rsiHub GlobalService: for the application and other middleware to control IoT devices,

networks and services and acquire IoT data, for checking and finding bridges for
interoperability and presenting workflows of configuration and provisioning of
resources for interoperability, slice management by provisioning and configuring
slices.

Figure 94: Component View of INTER-HINC

All the above-mentioned services provide standard REST APIs for any clients to use INTER-
HINC services and for applications to program calls to INTER-HINC services.

The current rsiHub deployment allows a single deployment for rsiHub with various
microservices and multiple rsiLocalService. rsiLocalService deployments are highly
dependent and integrated with the number of IoT/Cloud providers.

21 Such as: Hong Linh Truong: Towards a Resource Slice Interoperability Hub for IoT. IC2E 2018: 310-316; Hong-
Linh Truong, Lingfan Gao, Michael Hammerer, Service Architectures and Dynamic Solutions for Interoperability
of IoT, Network Functions and Cloud Resources, 12th European Conference on Software Architecture,
September 24-28, 2018, Madrid, Spain

D6.3: Site Acceptance Test Plan

224

The source code, detailed documents, deployment, tests, etc. are available in GitHub under
two git repositories: rsiHub and IoTCloudSamples

 rsiHub: https://github.com/sincconcept/HINC. The main services are part of rsiHub,
and due to their importance, by default they are deployed in cloud environments,
whereas the additional Local Service(s) can be deployed elsewhere, depending from
the individual requirements of resource providers.

 IoTCloudSamples: https://github.com/rdsea/IoTCloudSamples. Several Services and
their providers are provided. Some are integrated wiith INTER-IoT Services (e.g.,
Middleware). Some are emulating services who sources are not available.
Furthermore, some units have been developed for new scenarios. We will explain
them in Section 4.

Due to the richness and complexity of various services in rsiHub and IoTCloudSamples. The
test is therefore focusing on testing these components.

3.3.9.1 Integration of IoT framework

The integration is seen from two aspects: various Providers have been provided for various
purposes or for integration with other INTER-IoT, or for emulation. We outline the main
services we provide here but the complete list should be referred to our Git repositories.

3.3.9.1.1 IoT, Network Functions and Cloud Providers

As part of Inter-HINC, many services are deployed in order to run specific providers. Some
Providers can be used in the production/development for INTER-IoT. However, some are just
emulators for certain important services that we cannot access the source/software. Below,
listed are the most important providers that can be used by INTER-IoT. Therefore, not only
we test them within the INTER-HINC but also test them separately.

Node-RED Datatransformer Provider

INTER-HINC provides a provider for data transformation using Node-RED (source code:
nodered-datatransformer-provider). This service provider is not like a single Node-RED
installed statically: the provider offers multi-tenant, separated Node-RED instances for
different stakeholders on the fly: any stakeholders (e.g. port authority, crane companies,
vessel company) can dynamically make a request to INTER-HINC to provision a Node-RED
instance and then deploy workflows (for analytics, data transformation, etc.) on demand.
The provider is developed atop Kubernetes that enables scalable data transformation and
analytics in INTER-IoT. This provider can wrap specific Node-RED components from INTER-
IoT. We have test it with Google cloud platform and minukube22 in a medium server size.
Currently, this provider is being integrated with the INTER-IoT Framework.

MQTT Provider

INTER-HINC provides an MQTT provider (similar to the case of Node-RED) for multi
stakeholders and multitenant scenarios. The MQTT broker can be instantiated on the fly
(source code: mosquitt-mqtt-provider).This provider can be used to provide MQTT instances
on-demand. It is especially useful for INTER-IoT to support multi-tenant in sharing and
exchanging information among various users based on different platforms. The Provider
offers MQTT atop Kubernetes container platforms, tested with Google cloud platform and
minikube.

22 https://kubernetes.io/docs/setup/minikube/

D6.3: Site Acceptance Test Plan

225

Generic Lightweight IoT Provider

There are many cases when an IoT function (e.g. Broker, Gateway, Firewall, etc.) has to be
executed in a lightweight machine. This means, the machine can only run basic operating
system features, VMs, or dockers, but cannot have a complex distributed system, like
Kubernetes. For such a case, a function is wrapped into a unit, which will be run as a
process within the machine. The Generic Lightweight IoT Provider will support this kind of
units in a generic way. Currently the integration with INTER-IoT Gateway is ongoing.

BigQuery Provider

This service providers offer service instances wrapping Google BigQuery; it enables the
requirements for setting up the storage service using the Google BigQuery.

Sensor Provider

This Provider offers to run different types of sensors for emulating real sensors. Emulating
sensors reflect real sensor based on realistic dataset and they are needed to test INTER-IoT
scenarios as the access to many types of data are not given. Emulating sensors mostly read
real dataset and replace the data

Video Camera Provider

We assume that we could also access cameras in INTER-IoT scenarios. This service
enables a provider through which one can obtain real camera video. In the context of SAT,
there is no such real camera from INTER-IoT available. Therefore, we use the service in the
emulation mode to obtain real camera from other places (e.g., in a city).

3.3.9.1.2 Connectors to other INTER-IoT Components

For integration with other services of INTER-IoT, we are also building connectors for
receiving real data from these services. Note that these connectors are still in testing as the
integration with various real INTER-IoT services is still in progress.

 INTER-IoT Middleware for receiving port weather information & truck access gateways
 INTER-IoT Middleware for controlling lights

Furthermore, it is also planned that other INTER-IoT components will use INTER-HINC
services. For example, we are currently working on how the Front-end in the INTER-IoT
Framework would utilize the Node-RED datatransformer provider to support multi-tenant
Node-RED and flows processing.

3.3.9.1.3 Port Application Services

INTER-HINC also integrates with other services emulating applications. Note that this is
currently doing so tests are also developed:

 Port Control Services: to emulate a feature of port control service to share information for
vessels in the emergency situation

 Alarm Service: emulates possible alarms that should be used to trigger actions for
vessels, trucks, etc.

3.3.9.1.4 Resource Slices

A resource slice reflects an integration view for INTER-IoT. It shows how different
components related to INTER-IoT and Interoperability can be created by INTER-HINC.

D6.3: Site Acceptance Test Plan

226

Various scenarios are detailed in papers23,24 and rsiHub GitHub25. Here we describe two main
example resource slices for testing. The list of resource slices will be extended and revised
during the course of the testing and implementation. Note that the number of resource slices
and resource slices are not fixed. It is up to the developer to use INTER-HINC to create
suitable resource slices integrating various components and services for different scenarios.

3.3.9.1.5 Accessing Sensor Data in seaport

This resource slice can be used to show middleware interoperability, protocol interoperability
and data interoperability with different solutions.

Example of resource slice: a tenant in the seaport wants to access sensor data in the
seaport with the condition of no-sharing middleware. The resource slice will be created,
including:

 Sensors: for sensor data.
 MQTT brokers for exchanging data

We then have different situations for resource slice reconfiguration
 First situation: the consumer wants to process data from the broker using a separate

workflow engine within the seaport. The slice is reconfigured with a new Node-RED
instance and the consumer adds a workflow into Node-RED.

 Second situation: Another consumer wants to access the sensor data from the
broker but finds that the data is in CSV, thus the consumer wants to deploy a
resource to transform CSV data to JSON. Two possible solutions:
o a new component is deployed that takes data from MQTT and transforms the CSV

to the JSON. This component is based on
(https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson

o a new Node-RED instance is created and a workflow for data transformation is
pushed into the instance.

 Third situation
o Similar to the second situation but the consumer is outside the seaport. Thus,

cloud services are used and Network Function is also enabled.

Data Exchange and Control in Emergency situation

We assume there are alarms occurring in a seaport. The alarms are propagated through an
MQTT broker. Usually, there are some analytics applications listening the alarms queues to
react to the alarms. One of such alarms analytics programs finds alarms related to terminals
in the port. It queries a PortControlService (PCS) to obtain the list of vessels approaching the
port. We have the resource slice creating dynamically:

 MQTT broker for alarms
 A REST PCS emulating the Port Control. The PCS has APIs for querying vessels and

for updating vessels positions. PCS has the back-end database as MongoDB.
 A set of vessel emulators (python/nodejs) emulate the movement of vessels. A

vessels emulator subscribes information from its providers via a queue.
 A set of vessel service providers. Each providers accept a different format of data

(JSON/CSV with different structures) and use different protocols (MQTT, AMQP and
REST).

23 Hong-Linh Truong, Lingfan Gao, and Michael Hammerer. 2018. Service Architectures and Dynamic Solutions
for Interoperability of IoT, Network Functions and Cloud Resources. 12th European Conference on Software
Architecture, September 24-28, 2018, Madrid, Spain.
24 Hong Linh Truong: Towards a Resource Slice Interoperability Hub for IoT. IC2E 2018: 310-316
25 https://github.com/SINCConcept/HINC/tree/master/scenarios

D6.3: Site Acceptance Test Plan

227

The above-mentioned resource slice can be extended to cover:
 Cranes and trucks are similar vessels with cranes/trucks and their providers
 Vessels/trucks/cranes/cameras have their GPS positions so that geohash can be

used to query them.

Note that while our slices show various integration with many components, many
components are not accessible thus, we have to emulate them, such as PortControlService
and Vessels.

3.3.9.2 Deliverables and version overview

The tests presented in this document are performed before the INTER-HINC D3. Therefore,
there are no documents that one needs to be signed. Table 3 shows the tools.

ID Description Check

Documents

1 rsiHub online document: https://github.com/sincconcept/HINC

2 IoTCloudSamples online document: https://github.com/rdsea/IoTCloudSamples

Hardware/Infrastructure

3 Google Cloud (BigQuery, Compute, Kubernetes)

4 Raspberry PI/Typical Computer

5 MongoDB (local installation, mlab.com instance, or MongoDB
Atlas(https://www.mongodb.com/cloud/atlas))

6 Docker container

7 MQTT (mosquito, https://mosquitto.org/)

8 RabbitMQ (https://www.rabbitmq.com/)

Tools

9 Postman

10 NodeJS

11 Python 3 and 2
Table 61:Tool checklist

The following table shows the software components and version of INTER-HINC used in the
tests. Note that there are many other components in the Git that we do not mention.

 ID Description Version Check

IoTCloudSamples

1 GenericLightweightIoTProvider 0.1.0

2 nodered-datatransformer-provider 0.1.0

3 mosquitt-mqtt-provider 0.1.0

4 bigQueryProvider 0.1.0

rsiHub

5 rsiGlobalService 0.1.0

6 rsiLocalService 0.1.0

7 Pizza-CLI 0.1.0

8 Port control vessel provider plugin 0.1.0

9 Alarm client provider plugin 0.1.0

10 Valencia sensor plugin 0.1.0
Table 62: Component version overview

D6.3: Site Acceptance Test Plan

228

3.3.9.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

2 Scalability. Design All tests

3 Ability to be enlarged to accommodate growth. Computing
resources

All tests

13 Extensibility T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

14 Platform independency T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

15 Support of common IoT communication protocols T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

31 Tools / libraries to support design T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

39 Heterogeneous gateway T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

43 Service discoverability T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

47 API for third-party developers All tests

52 API REST All tests

54 High responsiveness T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1, T2.1.1, T2.1.2,
T2.1.3

57 Monitoring and Self-Awareness of the system T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

81 Quality of Service T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1, T2.1.1, T2.1.2,
T2.1.3

87 Online documentation in INTER-IoT new tools and services All code/tests

95 Robustness, resilience and availability T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1
T1.5.1, T1.5.2, T1.5.3

108 Open Source All code/tests

123 Use of standards All code/tests (REST, AMQP,
MQTT)

125 Adaptability T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

132 Portability All code/tests

159 Development support for systematic IoT platforms
integration/interconnection

T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1, T2.1.1, T2.1.2,
T2.1.3

198 Capacity to achieve a heterogeneous computing platform
environment

T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

199 IDEs and APIs for rapid new applications development T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1, T2.1.1, T2.1.2,
T2.1.3

226 API for network services T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

231 Network function virtualization T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

232 Fault tolerance T1.1.1, T1.1.2, T1.1.3, T1.2.1,

D6.3: Site Acceptance Test Plan

229

T1.3.1, T1.4.1
T1.5.1, T1.5.2, T1.5.3

234 Provide connectors to middleware standards T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

236 Support of main Internet of Things platforms T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

237 API Middleware for interoperability between different platforms T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1, T2.1.1, T2.1.2,
T2.1.3

244 Gateway virtualization T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

248 Create new services to access different platforms T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

251 Ability of IoT platforms to coordinate with emergency systems T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1, T3.1.1, T3.1.2

266 API allows resources/capabilities discovery T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

282 Map publish/subscription between platforms T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

283 Manage a sensor or actuator T1.1.1, T1.1.2, T1.1.3, T1.2.1,
T1.3.1, T1.4.1

Table 63: Requirements vs. test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) in INTER-HINC. Note that the integration is still on the progress, while the scenarios
are covered, the test description is given.

ID Scenario name Covered by

2 IoT support for transport planning and execution T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1

6 Dynamic lighting in the port T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1

9 Accident at the port area T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1,
T3.1.1, T3.1.2

13 IoT interoperability for Vessel Arrivals T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1,
T3.1.1, T3.1.2

19 Transport on truck breaks down or is hijacked T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1

20 Damage or problems to the container during shipment T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1

29 Reliable control of robotic cranes and trucks in port terminals T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1

30 IoT access control, traffic and operational assistance T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1

32 Third party developer using INTER-FW to access data from
two different platforms

T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1,
T2.1.1, T2.1.2, T2.1.3

33 Heterogeneous Platforms Methodology-driven Integration T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.4.1,
T2.1.1, T2.1.2, T2.1.3

Table 64: Scenario vs test mapping

D6.3: Site Acceptance Test Plan

230

3.3.9.4 Test environment

Introduction

This chapter describes the test environments based on our current development and
infrastructure access that we have.

Test environment and deployment models

From Figure 94, the test environment includes 3 parts:
 The global deployment of rsiHub: it includes the rsiHub Global Service and the message

broker for rsiHub.
 Various local resource management services and corresponding providers
 The Client emulating the users which run tests

Note that “global” or “local” here are from the view of the design. Local deployments for
Providers and rsiHubLocalService are actually dependent on the Providers which are
available in the cloud as well.

Configuration rsiHub Global rsiHubLocal Service Providers

Test
environment

one
rsiHubGlobal
Service in
Google Cloud
Platform

One
RabbitMQ
from
http://cloudam
qp.com
instance with

One rsiHub Local
Management service in
Google Cloud Platform
(different data centers)

One
rishHubLocalManageme
ntService in TU Wien

Providers: in
Google Cloud
Platform
(different data
centers), TU
Wien

Table 65: A basic configuration of the tests

With respect specific configurations of machines, we have:
 A configuration of a Local Server as an Edge Server: 4 CPUs, 2 cores per CPU, Intel(R)

Core(TM) i7-5500U CPU @ 2.40GHz, 8GB memory, running with Ubuntu 16.04.4 LTS,
docker, VirtualBox, and minikube.

 A configuration of cloud edge server (for using the production cloud to install edge
servers): using machine type as g1-small (1 vCPU, 1.7 GB memory) in different zones

 A configuration for high-end edge servers using Kubernetes: includes 3 nodes with
Google Kubernetes in GCP. Each node is with machine type as n1-standard-1 (1 vCPU,
3.75 GB memory) and all are in us-central1-a

 A configuration for cloud brokers: a RabbitMQT instance is from cloudamqp.com. The
instance is a shared RabbitMQ, for development with max 100 queues, maximum 10
000 queued messages, maximum 1M messages/month, and max 20 concurrent
connections.

 A configuration for MongoDB: from https://www.mongodb.com/cloud/atlas, is a free 3-
node replica set in Amazon, with shared RAM and 512 MB storage.

All of these configurations are based on production environments but they are limited
capabilities to serve for the tests under minimum conditions (and partially avoid that a larger
configuration incurs a high cost).

D6.3: Site Acceptance Test Plan

231

Test tools, hooks and probes

We have two types of tests: basic tests and scenarios. Test scripts are available in the
GitHub of corresponding services in INTER-HINC project, including:

 rsiHub for resource slice creation, management, monitoring, interoperability
recommendation and management

 IoTCloudSamples: for various providers for interoperability

The following table shows the components and links where the tests scripts should be
accessed.

Repositories Services Links

IoTCloudSamples mqtt-provider https://github.com/rdsea/IoTCloudSamples

 Nodered-datatransformer-
provider

 MQTT-Provider

rsiHUB GlobalManagementService https://github.com/SINCConcept/HINC/

 LocalManagementService

 ArtifactRepositoryService
Table 66: Services and source code. Test scripts are within the Git repositories.

We use 3 types of tools for testing:

 Easy-to-use testing tool for the user: we use Postman26, which is a very popular tool
for testing web services. This tool allows various tests and the user can download it.
Furthermore, it allows to sync and share test scripts and requests through the cloud.
With this tool, the user can easy test INTER-HINC services in any place.

 Complex testing scripts: we develop testing scripts to test different scenarios. The
scripts are mainly written in Python and Javascript using well-known libraries.
Therefore, the tests can be executed easily in various environments.

 Behavior driven development (BDD) and Test Driven Development (TDD): we use
Chai27 to develop BDD/TDD tests for certain services.

In general, we provide various such scripts that can be used within the above-mentioned
tools.

TS_01 Test setup

The test setup is based on configurations described above. For cloud services productions
that are used for running rsHub or IoT/network functions/cloud providers, we registered free
tie services or pay services/compute instances and deploy software in corresponding
services. Software installation and configuration are documented in the source repository.

TT_01 Test tool Postman

The detail of Postman can be accessed from https://www.getpostman.com/. The setup of this
tool is quite straightforward. Using this tool, one can add test collections and modify the URL
of services accordingly based on the deployment. For example, Figure 95 presents a
snapshot of Postman tool. With this tool, we can setup test scripts and run tests for various

26 https://www.getpostman.com/
27 http://www.chaijs.com/

D6.3: Site Acceptance Test Plan

232

services. Using this tool, we allow the user to modify test constraints: e.g. max time, so that
they see the results suitable for their environment.

Figure 95: Snapshot of Postman tool for testing INTER-HINC

Figure 96 shows the Postman tool with test script to check the response time and if the
information returned (for a nodered instance) has an URL.

Figure 96: Example of setting up Postman for testing

D6.3: Site Acceptance Test Plan

233

TT_02 Test tool Python and Javascript

For this tool, one needs to setup the right environment and run the script. Most of the cases:
 Python: we use both Python2 and Python3. Related packages should be installed

using pip
 Javascript: we use NodeJS (https://nodejs.org/en/). For tests, npm is used to

download required packages described in the package.json

The following script presents an example of a python-based test that perform a test which is
a part of three steps for a simple resource slice: (1) create a Node-RED resource, (2)upload
a flow to the Node-RED resource, (3) remove the flow and (4) remove the resource. The
example script just shows the upload and removal of flows into a Node-RED. A flow here can
be used for IoT data processing or transformation.

parser = argparse.ArgumentParser()

parser.add_argument('--nodered_provider', help='URL of the Data
Transformer Provider')

parser.add_argument('--workflow_file',help='workflow_file')

args = parser.parse_args()

post_workflow_data =json.load(open(args.workflow_file))

headers = {'content-type': 'application/json'}

def test_upload_workflow(nodered_url):

workflow_post_response=requests.post(nodered_url+"/flows",data=jso
n.dumps(post_workflow_data),headers=headers)

 print(workflow_post_response.text)

 if (workflow_post_response.text):

 json_workflow_response =
json.loads(workflow_post_response.text)

 workflow_id=json_workflow_response['id']

delete_workflow_response=requests.delete(nodered_url+"/flow/"+work
flow_id)

 print(delete_workflow_response)

test_upload_workflow(args.nodered_provider)

D6.3: Site Acceptance Test Plan

234

TT_03 Test tool Chai

We also use chai for some BDD and TDD. Installation of Chai is available at:
http://www.chaijs.com/ and https://pypi.org/project/chai/

For BDD and TDD, for example, the following script tests if configuration for a real
deployment is corrected or not.

3.3.9.5 Test description

Scenario Deploying Resource Slices in Edge Servers for Interoperability

In this scenario, resource slices including messaging brokers (MQTT/Mosquitto), workflow
engine (Node-RED), data transformer, network functions (firewalls and deep packet
inspection tools), etc. need to be deployed in edge servers, e.g., in the seaport for
interoperability goals (e.g., protocol interoperability, data interoperability, IoT data platform
interoperability). The resource slices can be deployed in a constrained edge server
(resources are running as shared services for many users) or high-end edge server.

Use case create/list/delete a resource in an edge server

T1.1.1 Create, list and delete a resource in a light weighted edge server

ID T1.1.1

Test Test basic operations for resources in the edge server

Type online response time, live environment, error handling

Setup The GenericIoTservice is deployed in a virtual machine in Google Cloud. The
virtual machine is g1-small (1 vCPU, 1.7 GB memory) in us-east1-b. Python
script is running from another machine at TU Wien.

Start Select Node-RED as the type of the resource for the test and run the script

Req.

Input a test script with a sequence of three service calls: create a node-red resource,
get information about the newly created resource and removed the resource.

Output Success of tasks and performance values

Logs Summarized measurements are stored in GitHub. Logs are not stored as the
tests can be easily rerun.

Outcome Pass / Fail

var expect = require('chai').expect;

import deployTemplate from '../configTemplates/deployTemplate';

import GLIoTFunction from '../data/models/gliotfunction';

var gliotFunctions = JSON.parse(JSON.stringify(deployTemplate));

expect(gliotFunctions.functions).to.have.lengthOf(3);

expect(gliotFunctions.functions[0].functionname).to.be.a('string')
;

D6.3: Site Acceptance Test Plan

235

T1.1.2 Create, list and delete a Node-RED resource in a high-end edge server

ID T1.1.2

Test Test basic operations for resources in an high-end edge server

Type online response time, live data, live environment, error handling

Setup The nodered-datatransformer-provider is deployed in a virtual machine in
Google Cloud. The virtual machine is g1-small (1 vCPU, 1.7 GB memory) in us-
east1-b. This provider will be tested to create Node-RED resources for clients in
a Kubernetes cluster running in us-central1-a. The cluster has three nodes of
n1-standard-1 (1 vCPU, 3.75 GB memory). A Python test script is running from
another machine from a home in Vienna.

Start Run the provider in Google cloud and then run the test

Req.

Input a test script with a sequence of three service calls: create a node-red resource,
get information about the newly created resource and removed the resource.

Output Success of tasks and performance values

Logs Summarized measurements are stored in GitHub. Logs are not stored as the
tests can be easily rerun.

Outcome Pass / Fail

T1.1.3 Create, list and delete a Mosquitto MQTT Broker resource in a high-end edge
server

ID T1.1.3

Test Test basic operations for resources in an high-end edge server

Type online response time, live data, live environment, error handling

Setup The mosquitt-mqtt-provider is deployed in a virtual machine in Google Cloud.
The virtual machine is g1-small (1 vCPU, 1.7 GB memory) in us-east1-b. This
provider will be tested to create Node-RED resources for clients in a
Kubernetes cluster running in us-central1-a. The cluster has three nodes of n1-
standard-1 (1 vCPU, 3.75 GB memory). A Python test script is running from
another machine in TU Wien.

Start Run the provider in Google cloud and then run the test

Req.

Input a test script with a sequence of three service calls: create a node-red resource,
get information about the newly created resource and removed the resource.

Output Success of tasks and performance values

Logs Summarized measurements are stored in GitHub. Logs are not stored as the
tests can be easily rerun.

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

236

Use case Create a resource slice in an Edge system

T1.2.1 Create and delete a resource slice of Mosquitto MQTT Broker and Node-RED a
lightweighted edge server

ID T1.2.1

Test Test basic operations for resources in an high-end edge server

Type online response time, live data, live environment, error handling

Setup The mosquitt-mqtt-provider is deployed in a virtual machine in Google Cloud.
The virtual machine is g1-small (1 vCPU, 1.7 GB memory) in us-east1-b. This
provider will be tested to create Node-RED resources for clients in a
Kubernetes cluster running in us-central1-a. The cluster has three nodes of n1-
standard-1 (1 vCPU, 3.75 GB memory). A Python test script is running from
another machine in TU Wien.

Start Run the provider in Google cloud and then run the test

Req.

Input a test script with a sequence of three service calls: create a node-red resource,
get information about the newly created resource and removed the resource.

Output Success of tasks and performance values

Logs Summarized measurements are stored in GitHub. Logs are not stored as the
tests can be easily rerun.

Outcome Pass / Fail

Use case deploy workflow for data conversion

T1.3.1 Create a slice of Node-RED resource and deploy a workflow

ID T1.3.1

Test Test basic operations for resources in an high-end edge server

Type online response time, live data, live environment, error handling

Setup The mosquitt-mqtt-provider is deployed in a virtual machine in Google Cloud.
The virtual machine is g1-small (1 vCPU, 1.7 GB memory) in us-east1-b. This
provider will be tested to create Node-RED resources for clients in a
Kubernetes cluster running in us-central1-a. The cluster has three nodes of n1-
standard-1 (1 vCPU, 3.75 GB memory). A Python test script is running from
another machine in TU Wien.

Start Run the provider in Google cloud and then run the test

Req.

Input a test script with a sequence of three service calls: create a node-red resource,
get information about the newly created resource and removed the resource.

Output Success of tasks and performance values

Logs Summarized measurements are stored in GitHub. Logs are not stored as the
tests can be easily rerun.

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

237

Use case deploy a program accessing INTER-IoT Middleware

T1.4.1 Create a resource and deploy a program obtaining gate access data

ID T1.4.1

Test Deploy a resource slice include a program obtaining gate access data from
INTER-IoT Middleware

Type online response time, live data, live environment, error handling

Setup Assume that INTER-IoT Middleware available. A kubernetes platform is
available.

Start Run rsiHub and then run the test

Req.

Input a test script with a sequence of three service calls: search the artefact, deploy
the artefact for the resource and remove the resource

Output Success of tasks and performance values

Logs Logs are not stored as the tests can be easily rerun.

Outcome Pass / Fail

Use case check robustness of resource creation

T1.5.1 Check robustness of Node-RED resource creation

ID T1.5.1

Test Test if the resource creation is robust and elastic in Cloud.

Type backup and recovery, stress testing, live environment, error handling

Setup The nodered-datatransformer-provider is deployed in a Kubernetes cluster in
Google Cloud Platform. The cluster has elasticity rules.

Start Run the provider in Google cloud and then run the test

Req.

Input a test script makes a series of service calls creating node-red resource
instances. The number of instances is increased, more than the initial number
of nodes in the cluster. Another test script removes instances, the number of
cluster nodes are also decreased

Output Success of tasks and the automatic increase/decrease of cluster nodes to
accommodate requests

Logs Summarized measurements are stored in GitHub. Logs are not stored as the
tests can be easily rerun.

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

238

T1.5.2 Prevent misuse of API of Node-RED resource creation

ID T1.5.2

Test Test if the misuse of resource creation API is prevented.

Type Interface bound checks, live environment, error handling

Setup The nodered-datatransformer-provider is deployed in a high-end server but not
in the cloud.

Start Run the provider and then run the test

Req.

Input a test script makes a series of service calls creating node-red resource
instances. The number of instances is increased but the service calls will be
rejected when the number of instances reach a pre-defined limited.

Output Success of tasks and the rejection of API calls when the limit is reached.

Logs Summarized measurements are stored in GitHub. Logs are not stored as the
tests can be easily rerun.

Outcome Pass / Fail

T1.5.3 Check the failure of back-end MongoDB database in different resource
providers and services

ID T1.5.3

Test Test if the failure of back-end MongoDB database causes problems for
resource providers

Type Interface bound checks, backup and recovery, live environment, error handling

Setup The nodered-datatransformer-provider, mosquitt-mqtt-provider, and
rsiGlobalService is deployed with MongoDB as the backend database.
MongoDB is used with multiple nodes and replication

Start Run the providers and services and then run the test

Req.

Input a test script kills a MongoDB instance and makes calls to providers and
services, which operates normal.

Output Success of tasks and no interruption of services and providers.

Logs Summarized measurements are stored in GitHub. Logs are not stored as the
tests can be easily rerun.

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

239

Scenario Deploying Resource Slices IoT Cloud for Data Conversion

In this scenario, a resource slice includes a sensor provider, a broker, simple analytics
program and big data storage. This resource slice reflects the case when, for example, a
stakeholder activates sensors (e.g., monitoring trucks, containers, or temperatures of some
objects) and requires sensor data to be sent to the queues to an analytic program which
pushes the results to Sensors, MQTT and Ingest, BigQuery and then the new elements as
mentioned in the paper.

A video is shown in youtube: https://youtu.be/_SCrK8Q3xBs

Use case Create the Resource Slice sensor-broker-analytics-bigquery

T2.1.1 Create a sensor-mqtt-analytics-bigquery slice

ID T2.1.1

Test Test a resource slice of sensor-mqtt-analytics-bigquery

Type online response time, stress testing, live data, live environment, error handling

Setup rsiHub setup. Providers for sensors, mqtt, analytics and BigQuery are setup

Start Run rsiHub and providers. Then start to define the slice and use pizza
commandline to perform the slice creation

Req.

Input Resource slice

Output Success of tasks

Logs Video in youtube.

Outcome Pass / Fail

Use case Search for resources and artifacts for interoperability bridges

T2.1.2 Search for resources and artifacts suitable for interoperability bridges

ID T2.1.2

Test Search suitable resources and artifiacts for interoperability bridges

Type online response time, live data, live environment, error handling

Setup rsiHub is running, IoT providers running, artifacts are in the repository.
Metadata about interoperability are associated with artifacts and resources

Start Run rsiHub and provide a search commandline using pizza

Req.

Input Criteria for search.

Output Success of tasks and return valid result

Logs

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

240

Use case Update sensor-broker-analytics-bigquery with new receiver

T2.1.3 Update the slice of sensor-broker-analytics-bigquery with new resources

ID T2.1.3

Test Update an existing resource slice with new resource

Type online response time, live environment, error handling

Setup rsiHub is running. Providers are running. Existing slice is running

Start Define new resources and run the pizza command line for update

Req.

Input New resources defined.

Output Success of tasks

Logs

Outcome Pass / Fail

Scenario resource Slice for Exchanging data between Port and Vessel in
Emergency

We assume there are alarms occurring in a seaport. The alarms are propagated through an
MQTT broker. Usually, there are some analytics applications listening the alarms queues to
react to the alarms. One of such alarms analytics programs finds alarms related to terminals
in the port. It queries a PortControlService (PCS) to obtain the list of vessels approaching the
port. Based on the information about the vessels and the service providers of the vessels,
the alarms analytics program creates new brokers as resources or connects to existing
communication means of the vessel providers to share the information about the situations.
The program can also send requests to ask vessels to stop or change the plan to arrive
terminals.

Similarly, another analytics program can also inform other relevant objects around the
terminals (e.g., by query trucks) and requests them to stop or change the plan. Another
analytics program can request camera providers (for cameras close to the terminal, using
geohash) to provide videos to separate channels that can be accessed by polices and other
relevant third parties.

We have:

 AlarmSensor: emulates alarms
 AlarmService: the service captures alarms and handles alarm in the port
 A MQTT Broker Provider for messaging
 A Port Control Service: emulates the port control service which accepts information

about vessels and trucks.
 VesselService: emulates a vessel.
 Vessel Provider: emulates the vessels registering to the port and approaching the

port.
 TruckMonitoringProvider: monitors the entrance and existence of trucks by obtaining

events from INTER-Miiddleware.

D6.3: Site Acceptance Test Plan

241

A basic resource slice for alarms will include: Port Control Service, AlarmService,
VesselProvider and TruckMonitoringProvider.

For the use case of alarms, AlarmSensor will be activated: a new resource is added and thus
existing vessels and trucks should get notifications about alarms.

Use case: Create a resource slice for alarm

T3.1.1 Create resource slices for alarms

ID T3.1.1

Test Test a resource slice for alarms

Type online response time, live data, live environment, error handling

Setup rsiHub and providers, truck information sent by INTER-IoT Middleware is
emulated through a RabbitMQ with real dataset.

Start Run rsiHub and providers; run the pizza commands to create the basic
resource slice

Req.

Input Resource information and configuration

Output Success of the slice creation

Logs

Outcome Pass / Fail

Use case: add new alarms and vessels into the alarm slice

T3.1.2 Integrate new vessels and alarms in resource slices

ID T3.1.2

Test Test new vessels and alarms in the resource slice for alarms

Type online response time, live data, live environment, error handling

Setup rsiHub and providers, truck information sent by INTER-IoT Middleware is
emulated through a RabbitMQ with real dataset.

Start Create new vessels, create new alarms

Req.

Input New vessels, new alarms

Output New vessels receive alarms, new alarms are handled and propagated to
vessels & trucks

Logs

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

242

3.3.9.6 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T1.1.1 Create, list and delete a resource in a lightweighted edge server Pass / Fail

T1.1.2 Create, list and delete a Node-RED resource in a high-end edge
server

Pass / Fail

T1.1.3 Create, list and delete a Mosquitto MQTT Broker resource in a
high-end edge server

Pass / Fail

T1.2.1 Create and delete a resource slice of Mosquitto MQTT Broker and
Node-RED a lightweighted edge server

Pass / Fail

T1.3.1 Create a slice of Node-RED resource and deploy a workflow Pass / Fail

T1.4.1 Create a resource and deploy a program access gate access data Pass / Fail

T1.5.1 Check robustness of Node-RED resource creation Pass / Fail

T1.5.2 Prevent misuse of API of Node-RED resource creation Pass / Fail

T1.5.3 Check the failure of back-end MongoDB database in different
resource providers and services

Pass / Fail

T2.1.1 Create a sensor-mqtt-analytics-bigquery slice Pass / Fail

T2.1.2 Search for resources and artifacts suitable for interoperability
bridges

Pass / Fail

T2.1.3 Update the slice of sensor-broker-analytics-bigquery with new
resources

Pass / Fail

T3.1.1 Create resource slices for alarms Pass / Fail

T3.1.2 Integrate new vessels and alarms in resource slices Pass / Fail

SAT Outcome Pass / Fail
Table 67: Test outcome overview

3.3.9.7 Integration ethics and security

In INTER-HINC we do not address ethics and security. When services deployed atop
infrastructures, they rely on the infrastructure security.

D6.3: Site Acceptance Test Plan

243

 Third Party: Semantic Middleware

Figure 97 depicts the overall architecture of the Semantic Middleware, focusing on its
semantic information, integration and dispatching capabilities. The diagram outlines the
components in charge of supporting it: Update Manager (UM) and Semantic Broker (SB), on
its turn made up by the Subscription Manager (SM) and the Messaging System (MS)
supported by a multi-agent System. Each sensor, after having gathered the information
which oversees, affects the knowledge base (GOIoTP) hosted on the shared semantic
repository (RDF store) by updating or deleting semantic assertions. This is done through a
web service exposed by UM. On the other hand, information consumers (smart services and
sensors) subscribes to the SM, providing their profile of interest.

SM is the component which is always listening on the queue that manages the new
subscriptions, leveraging the Apache ActiveMQ (ActiveMQ) messaging system. Whenever
SM receives a subscription request from a network client, it activates server-side an agent
(the ClientAgent) which takes care of the client interests. Namely, SM records this interest
activating an agent in charge of signaling emerging new information to the consumer. If such
agent already exists, SM simply notifies the new consumers’ interest. In each moment, the
consumer can unsubscribe by cancelling the request. Each time a sensor authors new
knowledge, the UM informs the SB of the occurred event so that, in a continuous query
processing fashion, the SB can evaluate emerging information and notifies it to the consumer
through the MS.

Figure 97: Overall architecture and its interaction with INTER.IoT

The client starts the interaction with the server through a subscription message containing
the description of the information of interest (specified in a query) with the minimum refresh
rate in milliseconds, together with a unique identifier of the request (req-id) and a reference
(pointer, address, etc.) of the client (client-ref.) to which forward the discovered information.

The query transmitted from the client is expressed through the SPARQL 1.1 syntax and may
be a SELECT, ASK or CONSTRUCT that refers to semantic model contained in the

D6.3: Site Acceptance Test Plan

244

repository. The server processes the subscription request and decides whether to accept it. If
it is rejected, the repository sends to the client the rejection condition ending the interaction.
If it is accepted, at each interval of minimum refresh rate, the server updates the evaluation
of the subscribed queries and transmits an information message (inform-result to the client)
containing the result of the executed query (query-result) if the result is not empty (SELECT
or CONSTRUCT query type) or positive (ASK query type), according to the chosen response
format.

The server continues to broadcast type messages (inform-result) as long as one of the
following conditions happen:

1. the client deletes the subscription request by the cancellation request (see next
section);

2. an error occurs for which the server is no longer able to communicate with the client
or to process queries.

All interactions are identified by a unique identifier other than zero (req-id) assigned by the
initiator of the protocol and valid for it (client-ref). This allows stakeholders to manage their
communication strategies and activities. Moreover, since it can be important to preserve the
sequence of the messages, the transport layer has to preserve the order of the messages
(reliable transport layer). Thanks to the uniqueness of the req-id, each client can participate
in multiple signaling at the same time. Figure 98 reports the overall workflow of the
subscription process.

Figure 98. Subscription and notification workflow

At any time, the client may cancel a subscription request by transmitting a cancel request to
the server. In such a request, the parameters req-id-ref and client identify the interaction to
be stopped (Figure 103). The server inform then the client if the interruption succeeded
(done) or that it was not possible to break the interaction due to an error (failure).

INITIATOR

(CLIENT)

PARTECIPANT
(REPOSITORY)

subscribe(req-id, client-ref., query, refresh-time)

refuse (req-id) [refused]

inform-result (req-id, query result) [0-n]

[agreed]

failure(req-id)
[failed]

failure [failed]

D6.3: Site Acceptance Test Plan

245

Figure 99. Workflow of the cancellation of the subscription

INITIATOR (CLIENT) PARTECIPANT
(REPOSITORY)

cancel(req-id, client-ref)

done

failure
[failed]

[success]

D6.3: Site Acceptance Test Plan

246

3.3.10.1 Integration of IoT framework

Internet-of-Things it is not just a matter of connecting things to the Internet; but more
importantly linking things in a synergistic networks of virtual and physical components able to
find, access, manage each other and work together with a higher degree of interoperability.
In order to enable such interoperability, it is needed to make things smarter, i.e., provide
them with the capabilities of exchange information, also at a semantic level, by providing
them the functions for register and follow alerts of changes information.

The scope of this work is to describe our experience in integrating the CNR-ITIA IoT platform
Virtual Factory with other Internet-of-Things (IoT) platforms leveraging the methodology and
framework of the INTER-IoT European project. Virtual Factory is a platform leveraging
Semantic Middleware to allow distributed manufacturing resources to interoperate and
collaborate with each other exploiting the IoT paradigm.

One of the main challenges for integrating different IoT platforms is to put in communication
these platforms equipped with heterogeneous communication protocols and technologies in
a way as smooth as possible, which guarantees a thorough interoperability in each
architectural levels of the platform, thus promoting the synergistic usage of existing IoT
platforms. This objective is in line with the INTER-IoT project, whose aim is to design,
implement and test a framework for inter-platform communication. So far, various existing
IoT platforms have been plugged into the framework ranging from various application fields,
thus demonstrating the advantages of such an integration platform disregarding the specific
application context. In this paper, we propose and discuss how Virtual Factory platform can
be integrated into INTER-IoT. From such integration, we expect to benefit from all the
advantages brought by the INTER-IoT project, mostly related with 1) the possibility offered by
the integration platform to exchange information between the plugged platforms in a
seamless and smart way; 2) the easing of the communication process between client and
Virtual Factory back-end services, by exploiting tested and robust communication
mechanisms provided within INTER-IoT implementation.

This section explores the integration of the Semantic Middleware with INTER-IoT
components \ products. The idea is implementig a "Virtual Factory Bridge" which handles
the connection of our Virtual Factory with all the underlying platforms, with the MW2MW

services and with the INTER-FW (Figure 97, Figure 100 and Figure 102). Under these
conditions, the Virtual Factory can be considered as a new platform. In this way, Virtual
Factory can ask information requests to the the other underlying platforms. The requests can
concern information about specific values. They are expressed composing a message queue
as specified in D3.1 (using Kafka protocol). As soon as the Virtual Factory receives the
answer, it elaborates the received information. The realization of the platform will be based
on "the generic interface which provides a structured template to easily develop new
bridges." (D3.1). In addition, the Virtual Factory will expose its functionalities according to the
structure provided by the "generic interface".

In addition to Bridge, another INTER-IoT product that Semantic Middleware will use is
GOIoTP (Figure 97 and Figure 101). Indeed, Semantic Middleware is agnostic to the meta-
model (TBOX) of the IoT platform ontology, i.e. the behavior of the Semantic Middleware
does not depend on a specific semantic structure of the ontology. Under these conditions,
the Semantic Middleware uses the GOIoTP paired with an application ontology specific of
the analyzed scenario (Figure 101). GOIoTP is taken as global common semantic model that
all the devices share and it will be used to represent general concepts of our scenario. Thus,
a link between our application ontology and GOIoTP will be studied and implemented (see

D6.3: Site Acceptance Test Plan

247

integration with the IPSM below). The ontology model will be stored into the RDF store
included into the Semantic Middleware through its provided SPARQL engine.

In addition, since it is essential to reconcile and mediate the application ontologies handled
by applications and devices and the core ontology shared within the whole platform, it should
be evaluated the integration of Semantic Middleware with Inter Platform Semantic
Mediator (IPSM) component proposed in INTER-IoT.In particular, the latter allows the
alignment of the commonalities (overlapping concepts) between the domain ontology (RDF
model) used in a specific IoT platform and the core ontology (RDF model) defined within the
INTER-IoT. It will be necessary to define the rules of the mapping for each domain ontology
that has to be aligned with the core ontology. Thus, IPSM will be exploited to translate and
link the meta-model (TBOX) of our application ontology with GOIoTP.

Figure 100. Semantic Middleware Bridge

D6.3: Site Acceptance Test Plan

248

Figure 101. Overlapping between application ontology and GIoTP

Components Interface overview of the used IoT
components

Tests

Virtual Factory Bridge The generic common interface as a
structured template to easily develop new
bridges (D3.1)

T34.62.5

GOIoTP Various entities defined in the Semantic
Model

All

IPSM Invoking the function of IPMS Aligner
(dashboard :
http://grieg.ibspan.waw.pl:3000/translation)

All

INTER-MW INTER-IoT rest API (Figure 6) T34.62.5

Table 68:Components and interface overview

D6.3: Site Acceptance Test Plan

249

Figure 102. Integration of the Semantic Middleware with the IoT framework

3.3.10.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the Semantic Middleware components

2 Validation and Test reports of the Pilot system components

3

Hardware

4 Workstation server \ Cloud (server which hosts Semantic Middleware server +
database)

5 PC client (PC which hosts the Virtual Factory monitoring application)

6

Tools

7 Semantic Middleware as a central component of the Virtual Factory Platform

8 Virtual Factory Platform

9 Virtual Factory Bridge Interface component (packed as Java Archive File)
Table 69: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

IoT Physical Gateway

1 Kafka

2 Rabbit

3 ActiveMq

D6.3: Site Acceptance Test Plan

250

4 Mqtt

IoT Virtual Gateway

5 Virtual Factory Bridge 1.0

6 GOIoTP 0.9

7 IPSM dashboard (http://grieg.ibspan.waw.pl:3000/)

8 INTER-MW 2.0.1

9 Docker container 1.13.1

10 Parliament

Semantic Middleware

11 Semantic Broker 1.0

12 Update Manager 1.0.0

13 Client Semantic Middleware Library 1.0.0

 14 RDF store (Stardog28 free version) 5.0.0

15 Publish-Subscribe middleware (ActiveMQ29) 5.15.1

16 Semantic data model (Application Ontology) 1.0.0

Virtual Factory Interface

17 Virtual Factory monitoring Application 0.1

18 Virtual Factory Platform 0.1
Table 70: Component version overview

3.3.10.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

42 Heterogeneous information representation T34.62.7

75 The interaction between IoT endpoints may follow M2M
concept

T34.62.1, T34.62.2,
T34.62.3, T34.62.4

96 Enable (automated or semi-automated) linking of relevant data
models

T34.62.7

178 Inter Platform Semantic Mediator provides data and semantic
interoperability functionality

T34.62.6

179 Inter Platform Semantic Mediator supports platform
communication

T34.62.6

180 Syntactic and semantics interoperability - Data format and
semantics translation

T34.62.6

237 API Middleware for interoperability between different platforms T34.62.5

270 API allows subscription to data streams/queues T34.62.1, T34.62.2,
T34.62.3, T34.62.4

282 Map publish/subscription between platforms T34.62.5
Table 71: Requirements vs test mapping

28 https://www.stardog.com/
29 http://activemq.apache.org/

D6.3: Site Acceptance Test Plan

251

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

32 Third party developer using INTER-FW to access data from
two different platforms

T34.62.5 T34.62.6 T34.62.7

33 Heterogeneous Platforms Methodology-driven Integration T34.62.5 T34.62.6 T34.62.7

 34 Virtual Factory: Position and Optimization of the pallets
(NEW SCENARIO)

T34.62.1, T34.62.2,
T34.62.3, T34.62.4,
T34.62.5 T34.62.6 T34.62.7

Table 72: Scenario vs test mapping

S34: Position and Optimization of the pallets

The sensors monitoring the pallet position will play the role of publisher as they will send the
information concerning the pallet position through the middleware (Step 1); this information is
expressed under the form of a SPARQL UPDATE. Also the working stations will publish their
availability status (Step 2). This information will be then consumed by the simulation tool
(Optimizer) which has previously subscribed to the changes applied to the pallet position
(Step 3) and the availability status of the working stations (using a proper SPARQL query)
with the goal to identify the optimized pallet route. In addition, the information concerning the
route is then published (Step 4) and in its turn consumed by the IoT actuators which allow to
change the route of the pallets along the conveyor belt (Step 5).

Figure 103. Workflow of the scenario

The use cases reported in the following sections involve various components integrated with
the Semantic Middleware. The components are the following:

 The Semantic Model. The Semantic model used in these SATs represents knowledge
concerning sensors and their corresponding measures, pallets and their real and
optimized positions.

 An applications (Virtual sensor) that mocks and simulates the behavior of an Ebeacon
sensor tracking the position of the pallets. These sensors will publish, through an

D6.3: Site Acceptance Test Plan

252

UPDATE SPARQL (Query 1), the position of the pallets P1 and P2 within the knowledge
base, according to a proper domain ontology.
To support the SAT, Virtual Sensor provides a GUI that allows to set a position for a
specific pallet, thus generating the corresponding UPDATE SPARQL query.

 Optimizer, a simulation tool which uses the pallet position and the availability status of the
working stations with the goal to identify the optimized pallet route. It consumes data
published by the various tracking sensors, while it publishes optimized routes for the
pallets.
To support the SAT, Optimizer is virtualized and provides a GUI that allows to start to
listen and consume information concerning position of a specific pallet, thus generating
the corresponding SELECT SPARQL query (Query 2). In addition, Virtual Optimizer
allows to set the new best route for the pallet, simulating the behaviour of the real
application.

 Virtual carriages (simulating the real carriages) each one transporting a pallet. They
consume data published by the simulator in order to follow a specific route.
To support the SAT, Virtual carriage provides a GUI that allows to start to listen and
consume information concerning route for a specific pallet, thus generating the
corresponding UPDATE SPARQL query (Query 3).

3.3.10.4 Test environment

Introduction

To test the functionality of the integrated Semantic middleware in combination with the IoT
framework representative test hooks in the system are needed. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test setups, hooks and probes used in the system used during
this SAT.

Test tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

D6.3: Site Acceptance Test Plan

253

TS_01 SemanticMiddlewareComponents

The server components, which are Update Manager (UM) and Semantic Broker (SB), are
deployed on a server. The client component (Client Semantic Middleware Library) is
deployed on the client application (typically included in its setup package).

TS_02 IPSM

The IoT IPSM is up and running.

TS_03 GOIoTP

The GOIoTP ontology. The file owl corresponding to GOIoTP has been created starting from
the corresponding ttl file.

TS_04 MW2MW

It includes the following components:

1. The middleware service (v. 2.0.1) running on a Docker container (docker version
1.13.1 build 092cba3) installed in a Ubuntu (r. 16.04) server available in a LAN used
for the present integration test;

2. The Java Archive file (mw.bridge.testBridge-0.0.1-SNAPSHOT.jar) containing all the
classes and resources files implementing the Bridge;

3. The TestedPlatform Emulator running on a different host connected to the INTER-
MW service via the LAN.

TS_05 Virtual Factory platform and its bridge

The middle component acting as a request handler mediator between the INTER-MW
(interfaced with Virtual Factory Bridge) and the client application.

TT_01 RDF store

An RDF store (we propose the version trial of Stardog: http://www.stardog.com/, but any
other kind of RDF store can be used).

TT_02 ActiveMq

A publish-subscribe middleware. We propose Apache ActiveMQ which is one of the most
popular open source messaging middleware (ActiveMQ) and supports the most well-known
standard protocols for messaging. Namely, Apache ActiveMQ supports MQTT (MQTT), a
lightweight messaging protocol built on top of TCP and characterized by low bandwidths as
needed by IoT ecosystems, and Openwire (ActiveMQ OpenWire), the Apache ActiveMQ
default message oriented protocol designed for performances optimization and supporting
private peer to-peer queues.

TH_01 Semantic Model

A Semantic Model, reported as owl file, which can be imported by the RDF store. This model
represents the knowledge concerning the scenario environments.

The Semantic model is paired with a list of SPARQL queries to subscribe a change into the
knowledge base and a list of SPARQL queries that updates the knowledge base in
correspondence of the subscription.

In Section 0 it is reported some hints about the semantic model used in these FAT and about
involved SPARQL queries (e.g. Query 1, etc.).

D6.3: Site Acceptance Test Plan

254

TP_01 FeedbackWithinGUI

Feedback of the tests will be shown within the GUI of the client applications.

TP_02 Virtual Factory monitoring Client Application

A GUI-based client application allowing the continuous monitoring of the smart factory
environment by visualizing various sensor measures request through the INTER-MW
communication protocol.

No specific tools will be used for site acceptance testing. On the contrary, a monitoring
application will be used to demonstrate the correct behaviour of the Virtual Factory platform
while interfacing to the INTER-MW via the Virtual Factory bridge. Different debug messages
inside the bridge and in the client application will be used to validate the test process.

TP_03 LogFile

A log file is provided which reports the auditing of some operations.

3.3.10.5 Test description

S34: Position and Optimization of the pallets

U62 – Device (sensor) triggers information

A device, typically a sensor, triggers an event sending determined information to the gateway
in order to be stored on the platform Cloud or server or in order to generate a response for
an actuator (being handled by the rules engine).

This use case involves these requirements: [75], [163], [270].

T34.62.1 Information published by Virtual Sensor are persisted

ID T34.62.1

Test Virtual Sensor publishes information and this information is persisted into the
RDF store

Type System testing

Setup Need test setup TS_01 SemanticMiddlewareComponents (Query 1, etc.)
Need test tool TT_01 RDF store
Need test tool TT_02 ActiveMQ
Need test hook TH_01 Semantic Model (Query 1, etc.)

Start Information to be published are not yet persisted

Req. [75], [163], [270]

Input Enable the sensor within range of the physical gateway

Output  The result of a SPARQL query on the RDF store

Logs The output log is stored in Folder LOG, in a file with prefix “T34.62.1_log”

Outcome Pass / Fail

Test output:

 Access the RDF store and verify through a SPARQL query (SELECT) if the
information has been stored

D6.3: Site Acceptance Test Plan

255

T34.62.2 Information updated by Virtual Sensor are received by the subscribed
clients

ID T34.62.2

Test Information updates are received by the subscribed clients

Type System testing

Setup Need test setup TS_01 SemanticMiddlewareComponents
Need test tool TT_01 RDF store
Need test tool TT_02 ActiveMQ
Need test hook TH_01 Semantic Model (Query 1, etc.)

Start Information to be published are not yet persisted
A client (Optimizer) is subscribed to the updated information

Req. [75], [163], [270]

Input Information published by Virtual Sensor. It concerns the position of the pallet.

Output  Check if the subscriber (Optimizer) receives the information updates
(postion of the pallet). It has to receive the information updated by the
Virtual Sensor.

 Check if other subscribers (Virtual Carriage), which are not subscribed to
the updated information, does not receive the updated information.

Logs The output log is stored in Folder LOG, in a file with prefix “T34.62.2_log”

Outcome Pass / Fail

Test output:

 Feedback of the tests will be shown within the GUI of the client applications (TP_01
FeedbackWithinGUI).

 Also a log file can be provided (TP_03 LofFile)

T34.62.3 Information updated by Optimizer are received by Virtual Carriage

ID T34.62.3

Test Information updates are received by the subscribed clients

Type System testing

Setup Need test setup TS_01 SemanticMiddlewareComponents
Need test tool TT_01 RDF store
Need test tool TT_02 ActiveMQ
Need test hook TH_01 Semantic Model (Query 2 and Query 3)

Start Information to be published are not yet persisted
A client (Virtual carriage) is subscribed to the updated information

Req. [75], [163], [270]

Input Information published by Optimizer (new route of the pallet).

Output  Check if the subscriber (Virtual carriage) receives the information updates.
The have to receive the updates triggered by the Optimizer changes.

Logs The output log is stored in Folder LOG, in a file with prefix “T34.62.3_log”

Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

256

Test output:

 Feedback of the tests will be shown within the GUI of the client applications (TP_01
FeedbackWithinGUI).

 Also a log file can be provided (TP_03 LofFile)

T34.62.4 Updates concerning information on which no client is subscribed

ID T34.62.4

Test Updates concerning information on which no client is subscribed

Type System testing

Setup Need test setup TS_01 SemanticMiddlewareComponents
Need test tool TT_01 RDF store
Need test tool TT_02 ActiveMQ
Need test hook TH_01 Semantic Model (Query 1, etc.)

Start Information to be published are not yet persisted
A couple of clients (Virtual carriage and Optimizer) are subscribed to various
information. The latter are not linked with the updated information

Req. [75], [163], [270]

Input Information published by Optimizer

Output  Check if the subscribers (Virtual carriage) receives or not the information
updates: They do not have to receive the updates.

Logs The output log is stored in Folder LOG, in a file with prefix “T34.62.4_log”

Outcome Pass / Fail

Test output:

 Feedback of the tests will be shown within the GUI of the client applications (TP_01
FeedbackWithinGUI).

 Also a log file can be provided (TP_03 LofFile)

T34.62.5 (TEST of INTEGRATION with IoT components) The connection with
the Semantic Middleware Bridge (reading a device steraming data flow)

ID T34.62.5

Test Testing the system response to a simulated reduction of the temperature in the
tested environment

Type Integration with the various components of the system

Setup The test needs the Virtual Factory monitoring Client Application set up (TP_02)
and running with an established connection with the Virtual Factory Platform
(TS_05), this one connected to INTER-MW through the Virtual Factory Bridge

Start The Client Application has established a valid connection with the Virtual

D6.3: Site Acceptance Test Plan

257

Factory Platform component

Req. The following requirements are expected in order to execute the test:

 The Application client has successful registered to the INTER-MW as a
client with specific ClientID;

 The Virtual Factory Platform has successfully registered with a specific
platformId for the Virtual Factory platform.

 The temperature sensor has successfully recognized within the INTER-
MW as a device to which the client can subscribe.

Input Subscribe to registered temperature sensor (tempSensor1) via a
application/json packet continaing the subscribe request, the platformID and
the thingId.

Output A stream data channel is opened as a result of a Virtual Factory Platform
connection returned to the callback address. Temperature sensor data flaws
from the Platform to the client with a frequency parametrized in the subscribe
request.

Logs Virtual Factory bridge log are stored in the INTER-M log file as debug
messages. The Platform log are displayed in the console, while the client app
log visualized as GUI messages (status bar messages, dialog windows, etc.) of
TP_2.

Outcome Pass / Fail

T34.62.6 (TEST of INTEGRATION with IoT components) The connection with
the Semantic Middleware Bridge (actuating over a controlled device)

ID T34.62.6

Test Testing the system response to a new temperature setting in the tested
environment

Type Integration with the various components of the system

Setup The test needs the Virtual Factory monitoring Client Application set up (TP_02)
and running with an established connection with the Virtual Factory Platform
(TS_05), this one connected to INTER-MW through the Virtual Factory Bridge

Start The Client Application has established a valid connection with the Virtual
Factory Platform component

Req. The following requirements are expected in order to execute the test:

 The Application client has successful registered to the INTER-MW as a
client with specific ClientID;

 The Virtual Factory Platform has successfully registered with a specific
platformId for the Virtual Factory platform.

 The actuator device responsible for the setting of the shop floor indoor
temperature has successfully recognized within the INTER-MW as a
device to which the client can send an actuate request.

Input Sending of an actuate request to actuator (tempEnv1) via an application/json
packet containing the actuate request, the platformID and the thingId.

Output The actuation instructions are successfully sent to the actuator device otherwise
an exception is thrown.

Logs Virtual Factory bridge log are stored in the INTER-M log file as debug
messages. The Platform log are displayed in the console, while the client app

D6.3: Site Acceptance Test Plan

258

log visualized as GUI messages (status bar messages, dialog windows, etc.)

Outcome Pass / Fail

T34.62.7 (TEST of INTEGRATION with IoT components) The connection with a
ThirdParty platform connected to the INTER-MW (reading a device streaming
data flow)

ID T34.62.7

Test Testing the system response to a simulated reduction of the outdoor
temperature affecting indoor temperature parameter setting.

Type Integration with the various components of the system

Setup The test needs the Virtual Factory monitoring Client Application set up (TP_02)
and running with an established connection with the Virtual Factory Platform
(TS_05, this one connected to INTER-MW through the Virtual Factory Bridge.
The test also needs a ThirdParty platform connected to INTER-MW via a
ThirdParty Bridge able to measure outdoor temperature through a connected
device (externalTempSensor).

Start The Client Application has established a valid connection with the Virtual
Factory Platform component

Req. The following requirements are expected in order to execute the test:

 The Application client has successful registered to the INTER-MW as a
client with specific ClientID;

 The Virtual Factory Platform has successfully registered with a specific
platformId for the Virtual Factory platform. The same for the
ThirdParty Platform.

 The external temperature sensor has successfully recognized within the
INTER-MW as a device to which the client can subscribe.

Input Subscribe to registered temperature sensor (externalTempSensor) via an
application/json packet containing the subscribe request, the platformID and
the thingId. The platfomID is that of the ThirdParty platform.

Output A stream data channel is opened as a result of a Virtual Factory Platform
connection returned to the callback address. Outdoor temperature sensor data
flows from the Third-party Platform to the client with a frequency parametrized
in the subscribe request.

Logs Virtual Factory bridge log are stored in the INTER-M log file as debug
messages. The Platform log are displayed in the console, while the client app
log visualized as GUI messages (status bar messages, dialog windows, etc.)

Outcome Pass / Fail

T34.62.8 (TEST of INTEGRATION with IoT components) The ontology alignment
test through IPSM

ID T34.62.8

Test The ontology alignment test between our Application Ontology
(AO) and the GOIoTP ontology will be performed according to
the general structure of the INTER-IoT alignment format (also
called IPSM alignment format) [Ref1]. The alignment element

D6.3: Site Acceptance Test Plan

259

describes a uni-directional set of translation rules comprised of
independent mapping cells, each of which has an “input” and
“output” entity descriptions. Elements <onto1> and <onto2>
describe respectively the AO ontology and the GOIoTP ontology
of the alignment, by giving their URIs and specifying the
formalism used for their definition (in our case AO adopt the
OWL Lite formalism).

The following alignment is used:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE Alignment
 [
 <!ENTITY sripas "http://www.INTER-IoT.eu/sripas#">
 <!ENTITY sosa "http://www.w3.org/ns/sosa/">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
 <!ENTITY iiot "http://INTER-IoT.eu/GOIoTP#">
 <!ENTITY iiotex "http://INTER-IoT.eu/GOIoTPex#">
 <!ENTITY medex "http://INTER-IoT.eu/medex#">
 <!ENTITY time "http://www.w3.org/2006/time#">
 <!ENTITY sweet_units
"http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl#">
 <!ENTITY bc "http://itia.cnr.it/SemanticMiddleware#">
 <!ENTITY healthMeasurement
"http://ontology.UniversAAL.org/HealthMeasurement.owl#">
 <!ENTITY personalHealthDevice
"http://ontology.UniversAAL.org/PersonalHealthDevice.owl#">
]
 >
<Alignment
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:sripas="http://www.INTER-IoT.eu/sripas#"
 xmlns="http://www.INTER-IoT.eu/sripas#"
 xmlns:sosa="http://www.w3.org/ns/sosa/"
 xmlns:iiot="http://INTER-IoT.eu/GOIoTP#"
 xmlns:iiotex="http://INTER-IoT.eu/GOIoTPex#"
 xmlns:time="http://www.w3.org/2006/time#"
 xmlns:medex="http://INTER-IoT.eu/medex#"
 xmlns:bc="http://itia.cnr.it/SemanticMiddleware#"
 name="SemanticMiddleware_CO_align" version="1.0.11"
creator="ITIA-CNR" description="Alignment between Semantic middleware
application ontology and INTER-IoT central ontology.">
 <onto1>
 <Ontology about="http://itia.cnr.it/SemanticMiddleware#">
 <formalism>
 <Formalism name="OWL2.0"
uri="http://www.w3.org/2002/07/owl#"/>
 </formalism>
 </Ontology>
 </onto1>
 <onto2>
 <Ontology about="http://INTER-IoT.eu/GOIoTPex#">
 <formalism>

D6.3: Site Acceptance Test Plan

260

 <Formalism name="OWL2.0"
uri="http://www.w3.org/2002/07/owl#"/>
 </formalism>
 </Ontology>
 </onto2>
 <steps>
 <step order="1" cell="1_observation"/>
 <step order="2" cell="2_observation"/>
 <step order="3" cell="3_observation"/>
 </steps>
 <map>
 <Cell id="1_observation">
 <entity1>
 <sripas:node_CTX>
 <rdf:type rdf:resource="&bc;Sensor" />
 </sripas:node_CTX>
 </entity1>
 <entity2>
 <sripas:node_CTX>
 <rdf:type rdf:resource="&iiot;IoTDevice" />
 </sripas:node_CTX>
 </entity2>
 <relation>=</relation>
 </Cell>
 <Cell id="2_observation">
 <entity1>
 <sripas:node_CTX>
 <rdf:type rdf:resource="&bc;Machining" />
 </sripas:node_CTX>
 </entity1>
 <entity2>
 <sripas:node_CTX>
 <rdf:type rdf:resource="&iiot;Service" />
 </sripas:node_CTX>
 </entity2>
 <relation>=</relation>
 </Cell>
 <Cell id="3_observation">
 <entity1>
 <sripas:node_CTX>
 <rdf:type rdf:resource="&bc;ProductionResource"
/>
 <bc:hasResourceComponent>
 <sripas:node_CTZ>
 <rdf:type
rdf:resource="&bc;ResourceComponent" />
 </sripas:node_CTZ>
 </bc:hasResourceComponent>
 </sripas:node_CTX>
 </entity1>
 <entity2>
 <sripas:node_CTX>
 <rdf:type rdf:resource="&iiot;SoftwarePlatform"

D6.3: Site Acceptance Test Plan

261

/>
 <rdf:type rdf:resource="&iiot;IoTDevice" />
 <iiot:hasComponent>
 <sripas:node_CTZ>
 <rdf:type
rdf:resource="&iiot;PlatformComponent" />
 </sripas:node_CTZ>
 </iiot:hasComponent>
 </sripas:node_CTX>
 </entity2>
 <relation>=</relation>
 </Cell>

 </map>
</Alignment>

Type TEST of INTEGRATION with IoT components

Setup Need test setup TS_02 IPSM
Need test hook TH_01 Semantic Model (a subset of this model must be aligned)

Start Invoking the proper function of IPMS Aligner (dashboard :
http://grieg.ibspan.waw.pl:3000/translation) and passing it the mapping in the form
presented above

Req. [178], [179], [180]

Input The following message:

{
 "@graph": [
 {
"@graph": [
{
 "@id" : "http://itia.cnr.it/SemanticMiddleware#testSensor",
 "@type" : "http://itia.cnr.it/SemanticMiddleware#Sensor"
},
{
 "@id" :
"http://itia.cnr.it/SemanticMiddleware#testMachining",
 "@type" : "http://itia.cnr.it/SemanticMiddleware#Machining"
},
{
 "@id" : "http://INTER-IoT.eu/GOIoTP#testPlatformComponent",
 "@type" : "http://INTER-IoT.eu/GOIoTP#PlatformComponent"
},

{
 "@id" :
"http://itia.cnr.it/SemanticMiddleware#testProduction

D6.3: Site Acceptance Test Plan

262

Resource",
 "@type" :
"http://itia.cnr.it/SemanticMiddleware#ProductionReso
urce"
},

{
 "@id" :
"http://itia.cnr.it/SemanticMiddleware#testResourceCo
mponent",
 "@type" :
"http://itia.cnr.it/SemanticMiddleware#ResourceCompon
ent"
},

 {
 "@id":
"http://itia.cnr.it/SemanticMiddleware#testProduction
Resource",
 "@type": [

"http://itia.cnr.it/SemanticMiddleware#ProductionReso
urce"
],

"http://itia.cnr.it/SemanticMiddleware#hasResourceCom
ponent": {
 "@id":
"http://itia.cnr.it/SemanticMiddleware#testResourceCo
mponent"
 }
 },

{
 "@id" : "http://itia.cnr.it/Sensor",
 "@type" : ["http://www.w3.org/2002/07/owl#Class"]
},
{
 "@id" :
"http://itia.cnr.it/SemanticMiddleware#Machining",
 "@type" : ["http://www.w3.org/2002/07/owl#Class"]
},
{
 "@id" : "http://INTER-IoT.eu/GOIoTP#PlatformComponent",
 "@type" : ["http://www.w3.org/2002/07/owl#Class"]
}

D6.3: Site Acceptance Test Plan

263

],
 "@id": "INTER-IoTMsg:payload"
 }
],
 "@context": {
 "ns": "http://ontology.UniversAAL.org/PhThing.owl#",
 "owl": "http://www.w3.org/2002/07/owl#",
 "INTER-IoTMsg": "http://INTER-IoT.eu/message/",
 "INTER-IoTInst": "http://INTER-IoT.eu/inst/",
 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "INTER-IoT": "http://INTER-IoT.eu/",
 "ns2": "http://ontology.UniversAAL.org/Measurement.owl#",
 "ns1": "http://ontology.UniversAAL.org/Context.owl#",
 "ns4": "http://ontology.UniversAAL.org/Device.owl#",
 "ns3":
"http://ontology.UniversAAL.org/HealthMeasurement.owl#"
 }
}

Output We expect to obtain the following message in order to accept the alignment test:

<map><Cell>
<entity1
rdf:resource="http://www.opengis.net/gml/Point"/>
<entity2
rdf:resource="http://www.w3.org/2003/01/geo/wgs84_pos#P
oint"/>
<measure
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0
.99</measure>
<relation>=</relation>

</Cell></map>

The correct response returns the URI of the entities that have been aligned and two
fundamental information: the logical relation existing between them (<relation>) and
the relative confidence of such relation (<measure>).

Outcome Pass / Fail

Test output:

 The result is reported in the GUI of the dashboard:

{

D6.3: Site Acceptance Test Plan

264

 "@graph" : [{

 "@id" : "INTER-IoT:GOIoTP#PlatformComponent",

 "@type" : "owl:Class"

 }, {

 "@id" : "INTER-IoT:GOIoTP#testPlatformComponent",

 "@type" : "INTER-IoT:GOIoTP#PlatformComponent"

 }, {

 "@id" : "http://itia.cnr.it/SemanticMiddleware#Machining",

 "@type" : "owl:Class"

 }, {

 "@id" : "http://itia.cnr.it/SemanticMiddleware#testMachining",

 "@type" : "INTER-IoT:GOIoTP#Service"

 }, {

 "@id" : "http://itia.cnr.it/SemanticMiddleware#testProductionResource",

 "@type" : ["INTER-IoT:GOIoTP#IoTDevice", "INTER-IoT:GOIoTP#SoftwarePlatform"
],

 "INTER-IoT:GOIoTP#hasComponent" : {

 "@id" : "http://itia.cnr.it/SemanticMiddleware#testResourceComponent"

 }

 }, {

 "@id" : "http://itia.cnr.it/SemanticMiddleware#testResourceComponent",

 "@type" : "INTER-IoT:GOIoTP#PlatformComponent"

 }, {

 "@id" : "http://itia.cnr.it/SemanticMiddleware#testSensor",

 "@type" : "INTER-IoT:GOIoTP#IoTDevice"

 }, {

 "@id" : "http://itia.cnr.it/Sensor",

 "@type" : "owl:Class"

 }],

 "@id" : "INTER-IoTMsg:payload",

 "@context" : {

 "ns" : "http://ontology.UniversAAL.org/PhThing.owl#",

 "owl" : "http://www.w3.org/2002/07/owl#",

 "INTER-IoTMsg" : "http://INTER-IoT.eu/message/",

 "INTER-IoTInst" : "http://INTER-IoT.eu/inst/",

 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

D6.3: Site Acceptance Test Plan

265

 "xsd" : "http://www.w3.org/2001/XMLSchema#",

 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",

 "INTER-IoT" : "http://INTER-IoT.eu/",

 "ns2" : "http://ontology.UniversAAL.org/Measurement.owl#",

 "ns1" : "http://ontology.UniversAAL.org/Context.owl#",

 "ns4" : "http://ontology.UniversAAL.org/Device.owl#",

 "ns3" : "http://ontology.UniversAAL.org/HealthMeasurement.owl#"

 }

}

T34.62.9 (TEST of INTEGRATION with IoT components) Application Ontology
imports GOIoTP

ID T34.62.9

Test GOIoTP ontology are imported within the Application Ontology used to
represent knowledge for the scenario S34.

Type TEST of INTEGRATION with IoT components

Setup Need test setup TS_03 GOIoTP
Need test tool TT_01 RDF store
Need test hook TH_01 Semantic Model

Start The following subsequent steps will be carried out:

1. Add the import directive in the AO ontology directed to the GOIoTP
ontology, so that all the statements of the latter are imported in the
former ontology;

2. After the concept alignment has been executed between AO and
GoIoTP, the alignment results are used in order to create logical
relation axioms within the integrated ontology (e.g., equivalentClass
axioms, subClassOf, etc.).

Req. [42], [96]

Input Instantiate an ontological individual as an instance of a specific class of the AO
ontology, which is equivalent to a class imported from the GoIoTP ontology.

Output Test if ontological individual inherits the features of the equivalent class.

Outcome Pass / Fail

Test output:

D6.3: Site Acceptance Test Plan

266

3.3.10.6 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T31.62.1 Information published by Virtual Sensor are persisted Pass / Fail

T31.62.2 Information updated by Virtual Sensor are received by the
subscribed clients

Pass / Fail

T31.62.3 Information updated by Optimizer are received by Virtual Carriage Pass / Fail

T31.62.4 Updates concerning information on which no client is subscribed Pass / Fail

T31.62.5 (TEST of INTEGRATION with IoT components) Connection with
the Bridge (reading a device steraming data flow)

Pass / Fail

T31.62.6 (TEST of INTEGRATION with IoT components) The connection
with the Semantic Middleware Bridge (actuating over a controlled
device)

Pass / Fail

T31.62.7 (TEST of INTEGRATION with IoT components) The connection
with a ThirdParty platform connected to the INTER-MW (reading a
device steraming data flow)

Pass / Fail

T31.62.8 (TEST of INTEGRATION with IoT components) The ontology
alignment test through IPSM

Pass / Fail

T31.62.9 (TEST of INTEGRATION with IoT components) Ontology import
Text

Pass / Fail

FAT Outcome Pass / Fail

Table 73. Test outcome overview

D6.3: Site Acceptance Test Plan

267

3.3.10.7 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

For each pilot the ethics is discussed in paragraphs 8.2 until 8.5. The security aspects of
each layer is discussed in paragraph 8.7 and 8.8.

The information for the pilots for both ethics and security comes from the partners and may
be included in other documents as well.

Semantic Middleware

The various steps needed for the execution of these FAT are not connected with major
ethical concerns. In particular, the components that make up the proposed semantic
middleware and data sets managed in these tests do not deal with sensitive personal data.
Therefore, just a limited attention should be given to the drawn of a code of ethics.

Under a generic perspective, Semantic Middleware allows a new way of combining and
integrating different data streams. As analyzing and acting on insights from these data can
introduce new classes of risks of unethical or even illegal use of insights, it is necessary to
tackle ethical challenges that can emerge, analyzing a proper risk mitigation. The idea is
creating a code of data ethics leveraging the Universal principles for data ethics—Guidelines
introduced in [Ref2].

Concerning the security, no particular attention is required. RDF STORE and Semantic
Middleware expose an authenticated access and for this reason test credentials will be
provided to access RDF store and to access Semantic Middleware.

D6.3: Site Acceptance Test Plan

268

 Third Party: SecurIoTy

Concerns about information security are one of the main reasons for companies and private
individuals not to adopt cloud services and to be sceptical about IoT systems. On top of
concerns regarding physical- and cyber-attacks, international corporations additionally carry
legal attacks in their threat model. However, cloud services are essential in improving
efficiency and cost structures.

SecurIoTy addresses that gap. SecurIoTy combines a number of security mechanisms to
protect data and to address all relevant security dimension such as confidentiality, integrity
and availability. We use CloudRAID, fragmentation and encryption. CloudRAID means that
data is fragmented, the fragments are encrypted and the encrypted fragments are
redundantly distributed to multiple independent storages. SecurIoTy is storage agnostic, i.e.
the data fragments may be distributed across multiple jurisdictions adding additional security.

SecurIoTy solves security and compliance issues when sending and sharing data via public
networks like the internet and when storing data in cloud services, thus enabling companies
to use cloud based IoT services, which they would not use without SecurIoTy protection.

SecurIoTy is crypto proxy technology and as such won’t interfere with the user experience or
with processes. SecurIoTy users will get to keep their established usage pattern and
processes and also keep their legacy infrastructure. SecurIoTy aims to integrate seamlessly.
SecurIoTy can be operated off-premise, on-premise or hybrid.

SecurIoTy is based on DocRAID® - a storage system which offers distributed, secured
storage and data transfer. To operate SecurIoTy we maintain a geo-redundant high
availability computing cluster. We operate storage capacities spread among different
European computing centres, among others in Germany and France. SecurIoTy provides
highly secure storage based on the principles of fragmentation and encryption. This means
no one (1) storage knows all the information to recompile a document.

Within the INTER-IoT framework we identify

(1) technical,
(2) legal and
(3) organizational

challenges. In the technical category, we can further identify challenges at the

(1) networking,
(2) middleware,
(3) application,
(4) interoperability and
(5) security

issues.

D6.3: Site Acceptance Test Plan

269

In the current version of SecurIoTy we focus on and test requirements from these categories:

Category Tested in current
version

Technical networking Yes

 middleware No

 application Yes

 interoperability YES

 security Yes
Table 74: test categories

SecurIoTy offers HTTP(S) interfaces and offers interfaces to connect to cloud storage
services which are operated by AvailabilityPlus (DocRAID® CloudRAID).

A detailed description of the System can be found here: DocRAID server guide E v1.20.pdf

From the architecture point of view, we have established and tested these components:

Category Tested in current
version

Distributed
storage

Storage 1 Yes

 Storage 2 Yes

 Storage 3 Yes

Key Storage Local storage Yes

 HSM – hardware security module No

Controller One controller at one site Yes

 Multiple distributed controllers at multiple sites No

Frontend HTML No

Secure Gateway Gate Keeper Yes

 Load Balancer No

 Firewall No

Frontend
access

HTTPS Yes

 WebDAV Yes
Table 75: tested components

The following paragraph gives a brief introduction of the implemented security measures and
potential vulnerabilities.

Security
Level

Use
Case

Measures / Best Practice Potential Vulnerability

Low to
very high

All Files are encrypted by AES256 weak password, security is
directly related to the strength of
the password

Very high All Two different random number
generators are used. The
random number generator is

It was reported that the random
number generator
Dual_EC_DRBG contains a

D6.3: Site Acceptance Test Plan

270

modularized; upon request
customer specific modules can
be used.

potential backdoor.

Medium Single
User

Strong user generated
password and Keyfiles

weak password, keyfiles stored
on local machine

High Single
User

User generated strong
password and Keyfiles; Keyfiles
stored on external device

weak password, social
engineering

Low to
very high

Multi
User

Admin generated password and
Keyfiles

weak password, keyfiles stored
on local machine

Low to
very high

Multi
User

Master Key File must be stored
in safe place

Master Key File in an unsecure
place

Medium Multi
User

Secret keys to access files are
stored by default in the Windows
key container

Windows key container can
potentially be hacked or contain
backdoors

Very high Multi
User

Secret keys to access files are
stored on an external protected
device, e.g. crypto stick

social engineering

Very high Multi
User

Secret keys to access files in a
workspace are exchanged
based on the Diffi-Hellman key
exchange, i.e. perfect forward
secrecy

Currently no backdoor known to
hack Diffi-Hellman

Medium Multi
User

User is activated by admin after
request. For very high security
user verification is required.

Workspace file could be
intercepted, e.g. if sent by email.
User verification by digital
handshake supports user
verification.

Very high Multi
User

Digital handshake for user
verification.

A man-in-the-middle attack would
generate an additional request
visible to the admin

Table 76: security measures

D6.3: Site Acceptance Test Plan

271

3.3.11.1 Integration of IoT framework

The proposed approach will complement the INTER-IoT Architecture and will provide
industry standard interfaces to integrate security as necessitated by the respective
application. A high degree of interoperability is achieved by adhering to standard protocols
like HTTPS(S) and WebDAV (TCP) and by integration of widely used cloud services. In
contrast to current approaches to IoT security which mainly focus on single aspects of IoT
security, SecurIoTy provides a single framework to cover scalable security from the device
level to the application level and which covers all dimensions of security such as
confidentiality, integrity and availability (CIA). Put to work in the logistics use case (INTER-
logP), SecurIoTy will push the envelope of IoT security well beyond the state of the art.

Figure 104: SecurIoTy overview of the solution architecture

SecurIoTy can be deployed as

(1) a sensor hub, collecting data from sensors directly or
(2) alternatively, can be set up as a gateway receiving data from sensor hubs and deliver

that data to a data storage.

SecurIoTy could be hosted on a sensor hub, which is typically a piece of hardware. In this
scenario SecurIoTy would be part of the hardware stack.

Within the scope of INTER-IoT we will deploy SecurIoTy as a cloud-based gateway.

D6.3: Site Acceptance Test Plan

272

Figure 105: SecurIoTy architecture with the DocRAID crypto proxy

Figure 106: SecurIoTy architecture with INTER-IoT middleware integration

The DocRAID crypto proxy works in three phases:

1. Fragmentation

Data is sent through a shredder and fragmented to pieces.

2. Encryption

Each fragment is encrypted using AES256. Key exchange optionally via Diffi-Hellman.

3. RAID distribution

D6.3: Site Acceptance Test Plan

273

Encrypted fragments are redundantly distributed by the DocRAID® algorithm, no one (1)
storage knows all fragments. Distribution across geographies and jurisdictions, keep legacy
infrastructure.

SecurIoTy is designed to accept any communication from middle ware nodes. This could be
JSON, XML or any binary format.

The use case will include storing sensitive data from the port authority such as transport
orders and gate access data in a secure repository which will be SecureIoTy.

3.3.11.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components OK

2 Validation and Test reports of the Pilot system components

Tools

7 PortSwigger Burp OK
Table 77: Deliverable checklist

The following table shows the software components and version of which the system release
version SecurIoTy 18.07.0201 consists of.

ID Description Version Check

Controller

10 DocRAID controller 18.07.0401 OK

Secure Gateway

20 Gate Keeper 17.01.3008 OK

Bridge

30 Node-red bridge 1.00 OK
Table 78: Component version overview

3.3.11.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

Requirement-IDs refer to IDs defined in the document “D2.3_INTER-IoT_Requirements-and-
business_v1.2.pdf”

ID Description Covered by

API

243 Gateway access API TC200010, TC200020
TC200030, TC200040

264 API allows create/update/remove users TC200090, TC200100

Interoperability

56 Secure synchronization TC300000, TC300010

Performance

72 Communication should be done using protocols that are
efficient in terms of amount of exchanged information over
message size

TC100010

D6.3: Site Acceptance Test Plan

274

Security

27
30

System security TC401010, TC401020
TC401030, TC401040
TC401050, TC401060
TC401070

28
37

System privacy TC401000

95 Robustness, resilience and availability TC403000, TC403010

98 Data provenance

261 A user knows its permissions TC409000, TC409005

263 Access to personal data needs to be previously authorized TC409010, TC409020
TC409030, TC409040
TC409050, TC409060
TC409070, TC409080
TC409090, TC409100
TC409110

Non-functional requirements

47 API for third-party developers TC200050, TC200060

58 Auditability and Accountability TC500010, TC409060
TC500030, TC500040

60 AutoLogin TC200070, TC200080

63 Provision of authentication credentials TC406000, TC406010
TC406020, TC406030
TC406040

68 Logging TC500050

69 Confidentiality, Avoid data falsification or disclosure TC404000, TC403000
TC401000

94 Supports multiplatform TC300020

Architecture

36 Scalability. Computing resources TC100010, TC100020
TC100030, TC405000
TC405010, TC405020

Table 79: Requirements vs. test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

2 IoT support for transport planning and execution

3 IoT Weighbridges TC200010, TC200020
TC200030, TC200040
TC200050, TC200060

4 Monitoring reefer container TC200010, TC200020
TC200030, TC200040
TC200050, TC200060

5 Monitoring of containers carrying sensitive goods TC200010, TC200020
TC200030, TC200040
TC200050, TC200060

6 Dynamic lighting in the port TC200010, TC200020
TC200030, TC200040

D6.3: Site Acceptance Test Plan

275

TC200050, TC200060

18 Containership is entering the harbour region TC200010, TC200020
TC200030, TC200040
TC200050, TC200060

20 Damage or problems to the container during shipment TC200010, TC200020
TC200030, TC200040
TC200050, TC200060

32 Third party developer using INTER-FW to access data from
two different platforms

TC200010, TC200020
TC200030, TC200040
TC200050, TC200060

Table 80: Scenario vs test mapping

3.3.11.4 Test environment

Introduction

To test the functionality of the integrated INTER-IoT in combination with the IoT framework
representative test hooks in the system are needed. This chapter will describe this
environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test setups, hooks and probes used in the system used during
this SAT.

Test tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this
document defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface
etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers,
packet sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the
needed functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Test setup

This paragraph describes the test environment and the system setup used during this SAT.

The test system contains these elements:

(1) DocRAID controller
(2) Secure gateway
(3) Keystore
(4) Storages
(5) Burp Scanner

D6.3: Site Acceptance Test Plan

276

(6) Node-red test node

Figure 107: Test architecture

In the test scenarios the controller and the storages reside on one (1) physical server. The
SecurIoT Gateway resides on a second physical server in a different network. The test
environment is set up using these components:

The server side:

 CPU: 4x Intel Xeon E5-26xx (Sandy Bridge) @ 2.1 GHz
 RAM: 16 GB
 Ethernet: Red Hat VirtIO Ethernet Adapter
 Operating systems:

o Windows 2012 R2 Server x64

The secure gateway:

 CPU: 4x Intel Xeon E5-26xx (Sandy Bridge) @ 2.1 GHz
 RAM: 16 GB
 Operating systems:

o Debian 9.2
o Nginx community edition

Libraries

 Microsoft .net environment 4.51

No additional libraries necessary.

SecurIoTy acceptance test includes sections covering

(1) Acceptance criteria
(2) Severity and priority of bugs
(3) Reporting process of bugs
(4) Test Environment

D6.3: Site Acceptance Test Plan

277

(5) Test cases

SecurIoTy relevant test cases are classified into these test type:

Test type Acronym

Manual MN

Automated AU

To be done tbd
Table 81: Requirements vs test mapping

We refer to the requirements given in D2.3_INTER-IoT_Requirements-and-business_v1.2

Acceptance criteria

During this project we will deliver prototypical developer (dev) implementations. We define
Alpha-, Beta-and release-Versions in the following paragraphs. The quality standards are
defined as given in the following tables based on a maximum of allowable errors and severity
levels.

Developer Version (Dev)

Developer versions are snap shots of the current developer process. A number of tests
should have been passed and documented in test cases. However, there are no formal
release criteria defined.

Alpha Version

An alpha version delivers the number of features required for this state. It is feature
complete. In the following table the acceptance criteria are defined for the release.

Criticality Maximum number of Test Cases

Critical 5

Important 10

Low 30

Trivial 60
Table 82: Alpha version quality criteria

Beta Version

A beta version delivers the number of features required for this state. It is feature complete.
In the following table the acceptance criteria are defined for the release. Features will not be
added anymore. Quality is in the focus now.

Criticality Maximum number of Test Cases

Critical 0

Important 5

Low 20

Trivial 40
Table 83: Beta version quality criteria

D6.3: Site Acceptance Test Plan

278

Release Version

A release version delivers is fully featured and complies with the quality standards defined.
Quality is defined in the following table.

Criticality Maximum number of Test Cases

Critical 0

Important 0

Low 15

Trivial 30
Table 84: Release version quality criteria

The software is delivered if all acceptance criteria are met during the tests. Per iteration only
those features will be test which are relevant for the current iteration and delivery plan.

Criticality and Priority

Bugs found during testing will be reported in the internal sprint-log (bug tracking). Bugs are
classified into criticality and priority. The classification system is given in the following table.

Criticality Description

Critical The application, major parts of the application or major
features are not available or will crash the system The
testcases have not been met.

Important Important parts of the application are not available or have
not passed the tests. There is a workaround to provide the
same/similar functionality.

Low Some functions and features do not work according to the
specification. There is a workaround. There is no major
disadvantage in using existing workarounds.

Trivial The application runs smoothly. Changes are made for
improved efficiency or for cosmetic reasons.

Feature request This not a bug rather a new request. Here requirements are
reformulated, changed or added.

Table 85: Criticality description

Feature requests have been added to include a way to specify useful extensions. A decision
has to be made if this is handled as a change request.

In addition to criticality a bug can be given a priority. Bugs with higher priority will be handled
earlier.

Priority Description

Urgent Bug handling must be initiated immediately. A patch should be provided
asap.

High Bug handling must be pursued with high priority. The bug can be
addressed during the next release.

Medium Bug can be addressed in one of the next releases.

Low Bug can be addressed as soon as there are resources available.

D6.3: Site Acceptance Test Plan

279

Table 86: Priority description

TT_01 Test tool

Burp Suite is a Java based testing framework. It has become an industry standard suite of
tools used by information security professionals, software and penetration testers. Burp Suite
helps you identify vulnerabilities and verify attack vectors that are affecting applications.

TH_01 Test hook Middleware

The SecurIoTy node provides an API for login, logout, send and retrieve data and to control
the data ID. Login data and user management is provided through a web frontend.

The SecurIoTy server can be found at this address: https://INTER-IoT.docraid.com/

Figure 108: SecurIoTy server

The SecurIoTy server provides features for security, logging and access management.

Figure 109: SecurIoTy access management

TP_01 Test probe Binary Data

Test data is produced by the node.js middleware test node and is injected into the SecurIoTy
node. Data consists of random binary strings.

D6.3: Site Acceptance Test Plan

280

3.3.11.5 Test description

Architecture

ID Name Description Reference Status

TC10xxxx Architecture

TC100010 Scalability. Computing
resources

Use load generator to retrieve data

(1) Test with 50 clients (response time < 1000 msec)
(2) Test with 250 clients (response time < 1000 msec)
(3) Test with 500 clients (response time < 2000 msec)

Protocols: use HTTPS and WebDav

REQ3
REQ72

Pass / Fail

TC100015 Use a test node to send and retrieve data from SecurIoTy every
(1) 5 seconds
(2) 1 second

REQ54 Pass / Fail

TC100020 Add storage to system / hot spare while system is operational. Pass / Fail

TC100030 Remove storage from system / hot spare while system is
operational.

 Pass / Fail

API

ID Name Description Reference Status

TC20xxxx API

TC200010 Gateway access API A list of exposed functions can be found in the technical
documentations. All exposed functions can be accessed and are
covered by the security gateway. Non-allowed, non-exposed and
non-existing function calls are blocked

REQ243 Pass / Fail

TC200020 Send unlisted commands to systems, gateway must not send data
to controller and will show an error message

 Pass / Fail

TC200030 Send listed commands to systems, gateway must send data to
controller and will show content

 Pass / Fail

D6.3: Site Acceptance Test Plan

281

TC200040 Send listed commands to system with non-plausible added
parameters, gateway must not send data to controller and will show
an error message

 Pass / Fail

TC200050 API for third-party
developers

A list of exposed functions can be found in the technical
documentations. HTML frontend is available.

REQ47 Pass / Fail

TC200060 Have a third party integrate the API
Node-Red writes and reads data to and from the API

 Pass / Fail

TC200070 AutoLogin A list of exposed functions can be found in the technical
documentations. Autologin is one of the exposed functions.
Alternative implementations are available. User can assign rights
and expiration dates.

REQ60 Pass / Fail

TC200080 Have a third party integrate the API
Node-Red writes and reads data to and from the API

 Pass / Fail

TC200090 API allows
create/update/remove
users

A list of exposed functions can be found in the technical
documentations. Create/update/remove is part of the exposed
functions.

REQ264 Pass / Fail

TC200100 Have a third party integrate the API
Node-Red writes and reads data to and from the API

 Pass / Fail

Interoperability

ID Name Description Reference Status

TC30xxxx Interoperability

TC300000 Secure synchronization Synchronization is handled by publicly available time servers, here:
ptbtime1.ptb.de

REQ56 Pass / Fail

TC300010 Time server on OS level must be set, check in best practice

TC300020 Supports multiplatform Needs clarification. SecurIoTy runs natively on Windows Server
2012 R2. Virtualized it runs on any Host including Linux. Clients
can be operated from any OS.
Verified on Linux Node-Red (Bridge) and Windows Server 2012

REQ94 Pass / Fail

D6.3: Site Acceptance Test Plan

282

(Controller)

 HTTP and WebDAV access has been exposed to the calling node,
these protocols can be used by legacy systems older than 2010.

REQ193 Pass / Fail

Privacy/Security

ID Name Description Reference Status

TC40xxxx Privacy / Security (CIA – confidentiality, integrity, availability)

TC401000 Sensitive data is stored
according to national
and EU policies

Third parties cannot access private data or unauthorized data
within the SecurIoTy system. Data protection meets the national
and European policies.

Data security has been tested against German PersDat, §203
StGB, AO.

Zero- knowledge data storage: admins and other personal with
access to the physical storage have no access to clear text
information.

Separation of content and operations: admins and other personal
with access to the physical storage have no access to clear text
information.

Fragmentation of content: content is fragmented and distributed
across multiple storages. No one storage has all knowledge to
recompile a document.

Cryptography: fragments are encrypted by AES 256

Resilience: RAID 5-3 concepts protects against failure of a storage
and against manipulation of content. Default is that 1 of 3 storages

REQ30
REQ27

Pass / Fail

D6.3: Site Acceptance Test Plan

283

may fail.

House many clients on one system. Each client has got its own key
material.

TC401010 Read backend data from storage and verify it is encrypted Pass / Fail

TC401020 Send encrypted fragments though a decryption tool and test if it be
can broken

 Pass / Fail

TC401030 Remove storage while system is active, system must keep running Pass / Fail

TC401040 Add storage while system is active, system must add fragments
and re-initiate the original state

 Pass / Fail

TC401050 Remove keys from keystore, system must not deliver any files
anymore

 Pass / Fail

TC401060 Alter content of keyfiles in keystore, system must not deliver any
files anymore

 Pass / Fail

TC401070 reinstall keyfiles in keystore, system must deliver files Pass / Fail

TC402000 Privacy See TC401000 REQ37
REQ28

TC403000 Robustness, resilience
and availability

See TC401000

Failure of storage will be compensated by RAID principle;
redundant storages will cover and provide fall back.

No one (1) storage knows all the fragments to recover a document,
if a storage is compromised, the attacker will not gain access to the
content even if the attacker is capable of breaking the encryption.

The architecture component “security gateway” will shield the
controller from non-conform traffic. Security gateway will filter
requests and will only let exposed function-calls pass.

REQ95 Pass / Fail

D6.3: Site Acceptance Test Plan

284

Optionally to increase availability and performance controllers may
be duplicated and spread across a controller farm. The secure
gateway will act as a load distributor. If a controller fails or is
attacked, spare controller can take over.

TC403010 Attack the system with an automated attack tool which is fed with
current vulnerabilities, result must not show any vulnerability

 Pass / Fail

TC404000 Confidentiality TC401000
TC403000

REQ69

TC405000 Avoid data falsification
or disclosure

Detailed rights on a user level grant access to specific data only.

Data manipulation at the backend will be detected by the DocRAID
parity checks.

Multitenant capable.

REQ36 Pass / Fail

TC405010 Run multiple tenants on same system and verify that data from one
tenant cannot be seen by another tenant from the frontend.

 Pass / Fail

TC405020 Run multiple tenants on same system and verify that data from one
tenant is different than from another tenant. Use same date entry
from front end and verify that backend fragments show different
content.

 Pass / Fail

TC406000 Provision of
authentication
credentials

Authentication credentials consisting of a User ID and an
authentication device, e.g. Password must be given to gain access.
Additionally, a second access code may be required, a second
factor, this can be a SMS or an Email.

REQ63 Pass / Fail

TC406010 Try to login with false credentials, system must deny access Pass / Fail

TC406020 Try to login with no credentials, system must deny access Pass / Fail

TC406030 Try to login with correct credentials, system must grant access Pass / Fail

TC406040 Leave session open but unattended for > timeframe set at
controller, system must deny access, session has ended, user must
logon again.

 Pass / Fail

D6.3: Site Acceptance Test Plan

285

TC409000 A user knows its
permissions

User may retrieve permissions REQ261 Pass / Fail

TC409005 Login and retrieve user permissions at the user terminal Pass / Fail

TC409010 Access to personal data
needs to be previously
authorized

User may retrieve data by permissions only. Permission can be set
to invalidate automatically after a certain time.

REQ263 Pass / Fail

TC409020 Admin grants / denies management right, user can/cannot manage
the system

 Pass / Fail

TC409030 Admin grants / denies file access rights, user can/cannot read/write
files

 Pass / Fail

TC409040 Admin grants / denies file share rights, user can/cannot share files Pass / Fail

TC409050 Admin grants / denies history (version) access rights, user
can/cannot read/write files

 Pass / Fail

TC409060 Admin grants / denies report access rights, user can/cannot access
reports

 Pass / Fail

TC409070 Admin grants / denies WebDAV access rights, user can/cannot
WebDAV

 Pass / Fail

TC409080 Share a file, recipient must be able to retrieve file without
credentials

 Pass / Fail

TC409090 Share a directory, recipient must be able to retrieve directory
without credentials

 Pass / Fail

TC409100 Share a file with an expired date, recipient must not be able to
retrieve file, error message will be shown

 Pass / Fail

TC409110 Share a folder with an expired date, recipient must not be able to
retrieve folder, error message will be shown

 Pass / Fail

TC410010 Encryption

 Filename encryption Do not encrypt filenames:
The known-plaintext attack (KPA) is an attack model for
cryptanalysis where the attacker has samples of both the plaintext
(called a crib), and its encrypted version (ciphertext). These can be

D6.3: Site Acceptance Test Plan

286

used to reveal further secret information such as secret keys and
code books.

Compliance (Usability)

ID Name Description Reference Status

TC50xxxx Compliance

TC500010 Auditability and
Accountability

All user actions are logged into a logfile and can be retrieved with
the appropriate rights.
Log files can be set to autodelete after a certain period of time, e.g.
to be compliant with national law.

REQ58 Pass / Fail

TC500020 TC409060

TC500030 Set autodelete to 1 (one) day, reports with age > 1 day must be
deleted by the system

 Pass / Fail

TC500040 Set autodelete to 1 (one) week, reports with age > 1 week must be
deleted by the system

 Pass / Fail

TC500050 Logging See TC500010 REQ68 Pass / Fail

D6.3: Site Acceptance Test Plan

287

3.3.11.6 Test outcome overview

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Architecture

ID Name Status

TC10xxxx

TC100010 Scalability. Computing resources Pass / Fail

TC100020 Pass / Fail

TC100030 Pass / Fail
Table 87: Test outcome overview: Architecture

API

ID Name Status

TC20xxxx

TC200010 Gateway access API Pass / Fail

TC200020 Pass / Fail

TC200030 Pass / Fail

TC200040 Pass / Fail

TC200050 API for third-party developers Pass / Fail

TC200060 Pass / Fail

TC200070 AutoLogin Pass / Fail

TC200080 Pass / Fail

TC200090 API allows create/update/remove users Pass / Fail

TC200100 Pass / Fail
Table 88: Test outcome overview: API

Interoperability

ID Name Status

TC30xxxx

TC300000 Secure synchronization Pass / Fail

TC300010

TC300020 Supports multiplatform Pass / Fail
Table 89: Test outcome overview: Interoperability

Privacy/Security

ID Name Status

TC40xxxx

TC401000 Sensitive data is stored according to national and EU
policies

Pass / Fail

TC401010 Pass / Fail

D6.3: Site Acceptance Test Plan

288

TC401020 Pass / Fail

TC401030 Pass / Fail

TC401040 Pass / Fail

TC401050 Pass / Fail

TC401060 Pass / Fail

TC401070 Pass / Fail

TC402000 Privacy

TC403000 Robustness, resilience and availability Pass / Fail

TC403010 Pass / Fail

TC404000 Confidentiality

TC405000 Avoid data falsification or disclosure

TC405010 Pass / Fail

TC405020 Pass / Fail

TC406000 Provision of authentication credentials

TC406010 Pass / Fail

TC406020 Pass / Fail

TC406030 Pass / Fail

TC406040 Pass / Fail

TC409000 A user knows its permissions Pass / Fail

TC409005 Pass / Fail

TC409010 Access to personal data needs to be previously authorized

TC409020 Pass / Fail

TC409030 Pass / Fail

TC409040 Pass / Fail

TC409050 Pass / Fail

TC409060 Pass / Fail

TC409070 Pass / Fail

TC409080 Pass / Fail

TC409090 Pass / Fail

TC409100 Pass / Fail

TC409110 Pass / Fail
Table 90: Test outcome overview: privacy/ security

Compliance (Usability)

ID Name Status

TC50xxxx

TC500010 Auditability and Accountability

TC500020

TC500030 Pass / Fail

D6.3: Site Acceptance Test Plan

289

TC500040 Pass / Fail

TC500050 Logging Pass / Fail
Table 91: Test outcome overview: compliance

3.3.11.7 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

SecurIoTy

A major purpose of SecurIoTy is to mitigate ethical issues and security risks. For example, a
typical requirement in such a scenario would be to separate the operations from the content.
In a typical data storage and/or transport scenario this requirement can hardly be upheld.
This problem is known as the “privileged account problem”, i.e. a privileged person, e.g. an
administrator would typically have access to sensitive data stored and transported by a
system. SecurIoTy solves this problem and would thus be a solution for potential ethical
issues arising in the context of IoT.

D6.3: Site Acceptance Test Plan

290

 Third Party: E3City

This project integrates E3Tcity devices with the Device Layer of INTER-IoT Inter Layer
Platform. E3city has his own platform, this platform is in production stage that is being used
in more than 20 towns in Spain. This development will provide INTER-IoT with a whole
device/cloud/app vertical solution to be applied to the Smart Port pilot and any project in
general.

These are main objectives:

 Connect E3Tcity devices to the Device layer of INTER-IoT, so that cross interaction
can be used in further stages.

 Use E3Tcity devices to provide Smart Lighting features to Valencia Port, such as
lighting control, power consumption, climatic sensors, movement detection and
lightness level.

Figure 110: System e3tcity description

The system consists of three elements:

 E3Tcity drivers
All smart city controllers have a MAC address and they communicate with the cloud
via Wi-Fi or cellular networks. They are also endowed with intelligence that allows to
monitor continuously energy parameters. With this info they can also control their
power consumption and detect faults and cable theft alarms.

 Cloud platform
Drivers exchange information in real time with delay of around 1 second with the
cloud platform to provide information on their sensors measures and to be able to
interact with the system manager. You can set the volume of data exchange
Generated data are sent to the cloud and store for a time in the device memory,
ensuring their integrity even in case of failure or sabotage.

 Users applications
Users’ applications are available for PC and Smartphone. They allow users to know
the state of offered services in real time and from anywhere.

This system is in production phase and ready to implement

D6.3: Site Acceptance Test Plan

291

3.3.12.1 Integration of IoT framework

The following table provides a description of the components of the IoT framework will be
integrated in this pilot and witch interfaces are used.

Components Interfaces Test

LC_10
(This device
will control
the sensing

part)

Protocol Modbus + INTER-Middleware
If possible activate the AC OUT 110-230
V from the application?

The device executes the orders of
regulation 0-10 V from the application?

The device connects to the router
configured in the application?

The device connects correctly with e3tcity
cloud?

When you remove the power several
times from the device, does it continue to
connect with the platform?

If you press on repeatedly the device
does not lock and allows you turn it on
and off again?

Platform e3tcity + INTER-Middleware

LS_10
 (This device
will control

the lights on
and off)

Protocol Modbus + INTER-Middleware If possible activate the AC OUT 110-230
V from the application?

The device executes the orders of
regulation 0-10 V from the application?

The device connects to the router
configured in the application?

The device connects correctly with e3tcity
cloud?

The six relay control outputs work by
activating them from the application?

Are the TOTAL POWER ACTIVE (W)
measurements monitored correctly from
the application?

Are the TOTAL POWER REACTIVE
(VAr) measurements monitored correctly
from the application?

Are the Voltage(V) and Intensity(A)
measurements monitored correctly from
the application e3tapp.com?

When you remove the power several
times from the device, does it continue to
connect with the platform?

Platform e3tcity + INTER-Middleware

Table 1: Description of the components.

D6.3: Site Acceptance Test Plan

292

3.3.12.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before SAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components

2 Validation and Test reports of the Pilot system components

Hardware

3 E3t city Devices

Tools

4 Electronic testing tools.

5 E3t City Platform
Table 92: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

IoT Physical Gateway

1 E3t city devices V3.14

IoT Virtual Gateway

2 E3t city platform V2.3.4

Universal container

3 E3t city REST API V3.2.1
Table 93: Component version overview

3.3.12.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

Functionality

11 Addressability and reachability T_03

20 Real time support T_03

21 Real time output T_03

25 Remote programming of devices T_02

26 Remote device control T_02

API

243 Gateway access API T_02

Interoperability

226 API for network services T_02

Operational

96 Enable (automated or semi-automated) linking of relevant data
sources

 T_03

204 Support smart network resources allocation in heterogeneous
wireless sensor networks

 T_03

Security

98 Data provenance T_03

27 System security T_01

D6.3: Site Acceptance Test Plan

293

95 Robustness, resilience and availability T_01
Table 94: Requirements vs. test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

6 Dynamic lighting in the port T_01 & T_02

32 Third party developer using INTER-FW to access data from
two different platforms

T_02

Table 95: Scenario vs test mapping

3.3.12.4 Test environment

Introduction

To test the functionality of the integrated E3T-PDI in combination with the IoT framework
representative test hooks in the system are needed. This chapter will describe this
environment and the used hardware, software, tools and platforms.

Test environment

To understand our test, it is necessary to understand how solution works.

We provide control and management through our devices. These devices are controlled by
users through our platform implemented in the cloud, and they can control them and receive
information through web or mobile apps.

Figure 111: Diagram of solution e3t.

These applications have user level systems so that only users with administration level can
manipulate the system configuration.

They also include security measures to prevent the sending of the same orders repeatedly in
a short period of time to block the system.

Also, we have an API/REST to offer our clients, where they can implement their own platform
or connect our devices to yours.

Next in the following figure 1, we can see a diagram of how the e3tsolution works:

In case of loss connection with the cloud, the devices would continue operating with the
previously established parameters.

D6.3: Site Acceptance Test Plan

294

Our testing phase it consists of the three parts:

· Test power and electrical connectivity.

· Test connectivity to our platform.

· Test the correct reception of data and control our devices through the platform.

Should any of these test fail, the repair should be attempted in the place and, if this is not
possible, the equipment will be exchanged for one of the reserve ones.

Test tools, hooks and probes

TS_01 Test setup electrical

We will connect the equipment to the power supply of the place to validate the correct supply
of this and that enough signal is available to connect with the CLOUD.

TT_01 Test tool electrical

In relation with the tools necessary for the hardware test, we use the usual electronic testing
tool, like Multimeter or oscilloscope.

TP_01 Test probe electrical

The device is designed internally to self-test, once it has been fed and later when it has been
connected to our platform, we will receive the data of this test.

TS_02 Test setup connectivity.

Here we test the connectivity between the devices with the cloud, we need an internet
connection and the only thing that must be sure that the equipment is connected to the
platform, for it the blue led must be fixed. In case this did not happen, the equipment would
not be connected to the platform and this could be due to a lack of signal in the place or a
failure in the equipment.

TT_02 Test tool connectivity.

The only tool is our platform.

TS_03 Test setup correct interpretation of commands

For this test the only thing that must be sure that the equipment is connected to the platform,
for I the blue led must be fixed.

TT_03 Test tool correct interpretation of commands

The only tool is our platform.

TH_03 Test hook correct interpretation of commands

In the last test we probe the response of the device, we sent several commands to the
device through the platform, and we check that the device sends measurements correctly.

We follow the next checklist in the verification:

D6.3: Site Acceptance Test Plan

295

Test Outcome

1 If possible activate the AC OUT 110-230 V from the application
(e3tapp.com)?

Pass / Fail

2 The device executes the orders of regulation 0-10 V from the
application (e3tapp.com)?

Pass / Fail

3 The six inputs analog/digital for the sensors works? Pass / Fail

4 The six relay control outputs work by activating them from the
application (e3tapp.com)?

Pass / Fail

 Communication Wifi 802.1B/G/N 2.4Ghz

1 The device connects to the router configured in the application
e3tapp.com?

Pass / Fail

2 The device connects correctly with e3tcity cloud? Pass / Fail

 Single-Phase consumption measures

1 Are the TOTAL POWER ACTIVE (W) measurements monitored
correctly from the application e3tapp.com?

Pass / Fail

2 Are the TOTAL POWER REACTIVE (VAr) measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

3 Are the Voltage(V) and Intensity(A) measurements monitored
correctly from the application e3tapp.com?

Pass / Fail

 Three-Phase consumption measures Pass / Fail

1 Are the TOTAL POWER ACTIVE (W) in PHASE1 measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

2 Are the TOTAL POWER ACTIVE (W) in PHASE2 measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

3 Are the TOTAL POWER ACTIVE (W) PHASE3 measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

4 Are the TOTAL POWER REACTIVE (VAr) PHASE1 measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

5 Are the TOTAL POWER REACTIVE (VAr) PHASE2 measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

6 Are the TOTAL POWER REACTIVE (VAr) PHASE3 measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

7 Are the POWER FACTOR PHASE1 measurements monitored
correctly from the application e3tapp.com?

Pass / Fail

8 Are the POWER FACTOR PHASE2 measurements monitored
correctly from the application e3tapp.com?

Pass / Fail

9 Are the POWER FACTOR PHASE measurements monitored
correctly from the application e3tapp.com?

Pass / Fail

10 Are the TOTAL POWER ACTIVE (W) TOTAL measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

11 Are the TOTAL POWER REACTIVE (VAr) in TOTAL
measurements monitored correctly from the application
e3tapp.com?

Pass / Fail

12 Are the POWER FACTOR TOTAL measurements monitored
correctly from the application e3tapp.com?

Pass / Fail

13 Are the Voltage(V) and Intensity(A) PHASES measurements
monitored correctly from the application e3tapp.com?

Pass / Fail

D6.3: Site Acceptance Test Plan

296

TH_03 Test probe correct interpretation of commands

The platform shows us in real time if our commands are being interpreted correctly in real
time.

TT_04 Test tool robustness.

We need our platform and one auxiliary battery.

TS_04 Test setup robustness

For this test we need that our device is connected to the platform, we will identify it with the
fixed blue led to analyze the response of the device at all times.

TH_04 Test hook robustness

We follow the next checklist in the verification:

Test Outcome

1 Is the equipment capable of hold on an erroneous power
supply due to the output?

Pass / Fail

2 Is the equipment not blocked when receiving a repeated
press of the power on command?

Pass / Fail

3 Does the equipment work without connecting the antenna,
although it is recommended that it is always connected?

Pass / Fail

4 Does withdrawing the power repeatedly blocks the device
without being able to turn it on again?

Pass / Fail

3.3.12.5 Test description

Scenario Testing power-on, power-off and reception of measurements of a
luminaire.

In the following, we detail a scenario where we will check the operation of a system that must
control the lighting of luminaire and receive measures from it.

T1.1.1 Test electrical

ID T1.1.1
Test This test is to check the correct manufacture of the equipment
Type Physical
Setup TS_01
Start Connected to a battery
Req. Battery and tools
Input
Output
Logs Our database
Outcome Pass / Fail

D6.3: Site Acceptance Test Plan

297

T1.1.2 Test connectivity

ID T1.1.2
Test Probe the connection with de cloud
Type Cloud
Setup TS_02
Start Connected to the platform
Req.
Input Commands from the platform
Output Error report
Logs Our database
Outcome Pass / Fail

T1.1.3 Test correct interpretation of commands

ID T1.1.3
Test Probe the response of the device
Type Cloud
Setup TS_03
Start Connected to the platform
Req.
Input Commands from the platform
Output Correct response to commands
Logs Our database
Outcome Pass / Fail

T1.1.4 Test repeated loss of power supply

ID T1.1.3
Test Probe the response of the device
Type Cloud
Setup TS_04
Start Connect and disconnect repeatedly power supply to equipment.
Req.
Input
Output The equipment responds well and turn on.
Logs Our database
Outcome Pass / Fail

T1.1.5 Test block by repeatedly pulsation.

ID T1.1.4

Test Probe the response of the device when you activate several times.

Type Cloud

Setup TS_04

D6.3: Site Acceptance Test Plan

298

Start Connected to the platform

Req.

Input Commands from the platform

Output Correct response to commands

Logs Our database

Outcome Pass / Fail
T1.1.6 Test wrong electrical supply

ID T1.1.4

Test Probe the response of the device when you supply de equipment by the output.

Type

Setup TS_04

Start Connected to the platform

Req.

Input Electrical Supply

Output Correct response of the equipment.

Logs Our database

Outcome Pass / Fail

3.3.12.6 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
SAT.

Test Description Outcome

T.01 Test electrical Pass / Fail

T.02 Test connectivity. Pass / Fail

T.03 Test correct interpretation of commands Pass / Fail

T.04 Test repeated loss of power supply Pass / Fail

T.05 Test block by repeatedly pulsation Pass / Fail

T.06 Test wrong electrical supply Pass / Fail

SAT Outcome Pass / Fail
Table 96: Test outcome overview

D6.3: Site Acceptance Test Plan

299

3.3.12.7 Integration ethics and security

Introduction

This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

E3T-PDI

In terms of security, we are able to detect if our equipment has been manipulated, since from
our platform we can read internal parameters of the devices and detect errors.

Furthermore, all our communication between devices and the platform is secure, since the
connection is encrypted, also all our control commands have a token generated by us, to
avoid external manipulations.

In the ethical part, this project by its design is completely ethical, with the demonstration that
the connection between platforms is possible, many possibilities open up to be able to
interconnect many parts of a city.

With our system, to be able to control the consumption, luminosity and a better management
of on and off we can have a lower energy consumption and therefore contaminate less.

D6.3: Site Acceptance Test Plan

300

4 Open Call Third Parties Evaluation

This section will include the outcome of the final evaluation of the open call third parties
which will take place in October 2018 and will be made available as an Annex to this
document. The first evaluation was conducted in June 2017 for the small contributions and in
July 2017 for the large contributions. Also a midterm evaluation was performed in June 2018
with successful results. The midterm evaluation covered the period till December 2017, and
this final evaluation will cover the period from June 2018 until the finalization of the
collaborations.

D6.3: Site Acceptance Test Plan

301

5 Conclusions

The document has described Site Acceptance Test (SAT) and final integration activities for
the pilots included in the proposal, i.e. INTER-LogP and INTER-Health, as well as the
collaborations with the third parties included during INTER-IoT OpenCall.

Following the determined industrial approach, the integration has been structured in three
stages, first one was included in D6.1, in which the pilots, use cases and technologies to be
used were described; the FAT documents of all collaborations from third parties was included
in D6.2 and, in this document, D6.3 provides information about Site Acceptance Test (SAT)
documents.

In complementary documents, as the ones presented under WP7 framework, the validation
of the integration process and the different KPIs specified is provided together with the
testing phase and its results.

The SAT documents provided by the internal pilots and by the third party collaborators, have
followed a common template in which they provided the information related with
stakeholder’s specifications and requirements. Commonly, SAT protocol is tightly related to
the FAT protocol and also entails deep inspection of the system and provides documented
evidence that a piece of equipment, system, or integrated process that has been delivered to
the end user or stakeholder has not been affected in the installation and has been
adequately tested at the end user’s facility and performed to the end user’s expectations
after deployment. The SAT document will complete a series of verifications to ensure that
what was defined has been supplied by verifying all previous settled specifications. Control
system verification will also be executed and documented in the SAT protocol. Performance
testing will also be outlined and the results documented to provide assurance that the system
being tested meets the end user’s expectations and requirements and can move on to the
next stage of qualifications required to validate the system.

The information is maintained in a separate document per pilot, so the working documents
are fourteen separate files that for commodity have been integrated and adapted in a single
document.

Each SAT documents expose the Test Strategy and approach where each third party
collaborator presents the program they followed to test the collaboration, the System
Description where a detailed explanation of the components and functionality of the
integrated system is depicted, the Integration with the INTER-IoT Component where guide
section of the followed steps is presented, Deliverables and Version Overview where the list
of documents related with the participation of the new Open Call partner is listed,
Requirements, Scenarios and Use Cases where each partner collaboration’ presents the
requirements of their system and the requirements, scenarios and use cases derived from
the junction with INTER-IoT specific component, Test Environment section describes the
stack of test that the integrated system has to pass successfully in order to be compliant with
the requirements previously defined and the description of the collaboration in the first
proposal, Test Outcome Overview where the results of the aforementioned test is detailed
and discussed and finally, Integration Ethics and Security that is a section dedicated to
security issues that arise during the integration and the ethical problems or issues that
comes related with the incorporation of the new collaboration component onto the INTER-IoT
system.

D6.3: Site Acceptance Test Plan

302

ANNEX A

SAT test execution sign-off

The following table shall contain the test attendance list. Each individual in this list will sign of
on his/her presence, the deliverables and the outcome of the tests.

Test execution date

Test execution time

System version 1.0

Name Company Function title Signature

Table 97: SAT test execution sing-off

