

D5.1
Design Patterns for Interoperable IoT

Systems

December 2017

Ref. Ares(2018)362 - 01/01/2018

D5.1: Design Patterns for Interoperable IoT Systems

INTER-IoT

INTER-IoT aim is to design, implement and test a framework that will allow

interoperability among different Internet of Things (IoT) platforms.

Most current existing IoT developments are based on “closed-loop” concepts, focusing

on a specific purpose and being isolated from the rest of the world. Integration between

heterogeneous elements is usually done at device or network level, and is just limited

to data gathering. Our belief is that a multi-layered approach integrating different IoT

devices, networks, platforms, services and applications will allow a global continuum of

data, infrastructures and services that will enhance different IoT scenarios. Moreover,

reuse and integration of existing and future IoT systems will be facilitated, creating a

defacto global ecosystem of interoperable IoT platforms.

In the absence of global IoT standards, the INTER-IoT results will allow any company

to design and develop new IoT devices or services, leveraging on the existing

ecosystem, and bring them to market as fast as possible.

INTER-IoT has been financed by the Horizon 2020 initiative of the European

Commission, contract 687283.

D5.1: Design Patterns for Interoperable IoT Systems

INTER-IoT

Design Patterns for Interoperable IoT Systems

Version: 2.3

Security: Public

27 December 2017

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

D5.1: Design Patterns for Interoperable IoT Systems

2

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and

may not be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT

consortium (including the Commission Services) and may not be disclosed except in accordance with

the consortium agreement.
The commercial use of any information contained in this document may require a license from the

proprietor of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the

information contained in this document is capable of use, nor that use of the information is free from

risk, and accepts no liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

D5.1: Design Patterns for Interoperable IoT Systems

3

Executive Summary

The aim of this document is to provide the background to the research in design of patterns
for interoperable IoT systems. The work is done within “T5.1 Definitions of Design Patterns
for Interoperable IoT Systems” task:

“To enable an agile design of the integration of heterogeneous IoT platforms into an
integrated and interoperable IoT platform, in this task, we focus on the definition of a
collection of design patterns with the aim of driving the integration designer to provide the
most effective solutions. Like in related contexts (e.g. software engineering), design patterns
are fundamental to ease the design phase by reusing patterns well documented with
example schemas and application guidelines. The design patterns will incorporate the
methods defined in WP3 and will be contextualized in different application domains (e.g. m-
Health, Transportation and Logistics) to furnish well-formalized domain-specific guidelines.
Thus, according to such guidelines, designers can produce rapid and effective specifications
for the IoT platform integration at any desired layer and also cross-layer.”

Very important is fact, that this document describes the design patterns specific for INTER-
IoT, not every pattern, used in the design and development phases.

The structure of this deliverable is as follows. Firstly, section “Introduction” explains the

deliverable's issue and necessary definitions. Moreover, this section presents methodology,

used in the process of defining new INTER-IoT design patterns. Next, section“State of the art

- research and analysis” contains the SotA analysis, i.e. presentation of common patterns

catalog (including comments about utilities for INTER-IoT). Section “INTER-IoT patterns

catalog”presents final INTER-IoT patterns catalog. Every design pattern contains detailed

description, including the solving problem, sources of inspiration and example usage in the

project implementation. The aim of section “Ethics” is to describe the role of design patterns

within the ethics aspects. Finally, section“Conclusions” contains conclusions of whole

document content.

D5.1: Design Patterns for Interoperable IoT Systems

4

List of Authors

Organisation Authors Main organisations’ contributions

SRIPAS

Katarzyna

Wasielewska-

Michniewska, Rafał

Tkaczyk

Document structure, Executive summary, Introduction,

Ethics, Conclusions, Document formatting, Initial

version, SOTA of design patterns: ontology, reactive,

integration. Design patterns of DS2DS layer

UNICAL Giancarlo Fortino SotA of design patterns: agent-oriented, IoT

PRODEVELOP

Miguel Montesinos,

Miguel Ángel

Llorente Carmona

SotA of design patterns: GoF. Design patterns of

INTER-FW

VPF
Pablo Giménez

Salazar

SotA of port logistics use case specific patterns. Design

pattern of INTER-LogP

XLAB Matevž Markovič
SotA of design patterns: Enterprise Bus, Micro-Services.

Design patterns of MW2MW layer

UPV

Regel González-

Usach, Alfonso

Camanes Navarro,

Eneko Olivares,

Carlos E. Palau

SotA of design patterns: GoF. Design patterns of D2D,

N2N, AS2AS layers, and Cross-Layer

Final Review

UPV-SABIEN

Álvaro Fides

Valero, Maria Jesus

Arnal Parada

SotA of (e/m) Health use case specific patterns. Design

patterns of INTER-Health

D5.1: Design Patterns for Interoperable IoT Systems

5

Change control datasheet

Version Changes Pages

1.0 SotA analysis and redefining 62

1.1

Document formatting; SotA

analysis and redefining, Analysis

and refinement the patterns'

descriptions; Reference SotA to

patterns' descriptions; Design

Patterns Template

81

1.2

Review of all patterns (after

redefining, including modified

diagrams). Submit new patterns

in sections: CROSS-Layer,

INTER-FW, INTER-Health and

INTER-LogP

94

1.3

Redefined all the document

(changed document structure,

make shorter SotA, add sections

about analysis of patterns

defining process, insert

correlations between SotA

analysis and design patterns,

etc.)

77

1.4 Add Ethics section 79

2.0 Ready for internal review 80

2.1 Reviewed by internal reviewers 80

2.2 Addressed review comments 83

2.3 Final review 85

D5.1: Design Patterns for Interoperable IoT Systems

6

Contents

Executive Summary .. 3

List of Authors ... 4

Change control datasheet ... 5

Contents .. 6

List of Figures .. 8

List of Tables ... 8

Acronyms .. 9

1 Introduction ...11

1.1 Definitions and terminology ..11

1.2 INTER-IoT Design Patterns defining process – methodology11

2 State of the art - research and analysis ...12

2.1 Object-oriented Patterns “Gang of Four” ..13

2.1.1 Analysis of GoF ...13

2.2 Integration Patterns ..14

2.2.1 Enterprise Integration Patterns ..14

2.2.2 SOA Patterns ..16

2.2.3 Service Orchestration ..20

2.2.4 System test setup, Test applications and tooling ...22

2.3 Reactive Patterns ...22

2.3.1 Analysis of Reactive Patterns ..25

2.4 Agent Design Patterns ...25

2.4.1 Analysis of Agent Design Patterns ..27

2.5 Ontology Patterns ..28

2.5.1 ODP Wiki ..28

2.5.2 Ontology Design Patterns Public Catalog ..28

2.5.3 Publications ...29

2.5.4 Alignment Patterns ..30

2.5.5 Analysis of Ontology Patterns ...30

2.6 IoT Patterns ...30

2.6.1 Analysis of IoT Patterns ..32

2.7 Security Patterns ..33

D5.1: Design Patterns for Interoperable IoT Systems

7

2.7.1 Analysis of Security Patterns ...33

2.8 Use case specific patterns..34

2.8.1 Port Logistics - Port Digital Transformation Reference Model34

2.8.2 Port Logistics – Geo-fence ..35

2.8.3 Port Logistics – Automatic identification and data capture36

2.8.4 Port Logistics – Port Community System ...36

2.8.5 Port Logistics - The Single Window (SW) Concept ..37

2.8.6 (e/m)Health - Health Care Information Systems [46]38

2.8.7 (e/m)Health - Database Design Pattern for Healthcare Information Systems [47]

 39

2.8.8 (e/m)Health - Quality Management in Healthcare Information Systems [48]40

2.8.9 (e/m)Health - Standardized Device Services – A Design Pattern for Service

Oriented Integration of Medical Devices [49] ...40

2.9 Pattern Forms ..41

3 INTER-IoT patterns catalog ...44

3.1 Designing process ..44

3.2 INTER-IoT Layer Patterns template ...45

3.3 INTER-IoT issues and solutions (final patterns catalog) ...46

3.3.1 D2D Layer ...46

3.3.2 N2N Layer ...50

3.3.3 MW2MW Layer ...52

3.3.4 AS2AS Layer ..58

3.3.5 DS2DS Layer ..61

3.3.6 CROSS Layer ...64

3.3.7 INTER-FW ..67

3.3.8 INTER-Health ..70

3.3.9 INTER-LogP ..75

3.4 Analysis of INTER-IoT Design Patterns ..76

4 Ethics ..77

5 Conclusions ...78

6 References ..79

D5.1: Design Patterns for Interoperable IoT Systems

8

List of Figures

Figure 1: INTER-IoT Design Patterns creation process ..12

Figure 2: Port Digital Transformation Reference Model ..34

Figure 3: Geo-fencing zones ..35

Figure 4: Port Logistics - The Single Window (SW) Concept ..38

Figure 5: Standardized Device Service pattern ...41

Figure 6: INTER-IoT GW Event Subscription (Publish/Subscribe) - D2D Communication48

Figure 7: D2D REST Request/Response ...49

Figure 8: INTER-IoT Pattern for Orchestration of SDN Network Elements............................51

Figure 9: INTER-MW Simple Component Pattern ...53

Figure 10: INTER-MW Message Broker ...55

Figure 11: INTER-MW Self-contained Message ...56

Figure 12: INTER-MW Message translator ...57

Figure 13: AS2AS Flow Based Pattern ...59

Figure 14: AS2AS Orchestration Pattern ..60

Figure 15: Discovery of IoT Services ..61

Figure 16: Alignment-based Translation Pattern ...62

Figure 17: Translation with central ontology ...64

Figure 18: INTER-IoT SSL for a secure access to layers’ APIs Authentication66

Figure 19: Configuration delegation pattern (example of a process)68

Figure 20: API façade pattern (example of a process) ..70

Figure 21: Deployment model of INTER-Health ..72

Figure 22: Security restrictions in INTER-Health deployment model74

Figure 23: INTER-LogP Geofencing Pattern ...76

List of Tables

Table 1 Important definitions ..11

Table 2 Enterprise Integration Patterns ...14

Table 3 Summary of SOA design patterns ..16

Table 4 SOA pattern categories ...18

Table 5 Selected IoT solutions service composition approach ..21

Table 6 Reactive patterns summary ...23

Table 7 Software agent patterns ...25

Table 8 ODP Wiki patterns summary ..28

Table 9 Ontology Design Public Catalog patterns summary ...29

Table 10 Initial Design Patterns template - Analysis & Refinement (number of patterns in

every step) ..45

D5.1: Design Patterns for Interoperable IoT Systems

9

Acronyms

AIDC Automatic Identification and Data Capture

API Application Programming Interface

AS2AS Application & Services Interoperability

CODePs Conceptual Ontology Design Patterns

D2D Device-to-Device

DS2DS Data & Semantics-to-Data & Semantics

EDOAL Expressive Declarative Ontology Alignment Language

FBP Flow-based programming

GDPR General Data Protection Regulation

GoF Gang of Four

GOIoTP Generic IoT Platform Ontology

GUI Graphical User Interface

GW Gateway

HCIS Health Care Information Systems

INTER-FW INTER-IoT Interoperable IoT Framework

INTER-Health INTER-IoT Platform for Health monitoring

INTER-IoT Interoperability of Heterogeneous IoT Platform

INTER-LAYER INTER-IoT Layer integration tools

INTER-LogP INTER-IoT Platform for Transport and Logistics

INTER-MW INTER-IoT Middleware

IoT Internet of Things

IoT-EPI IoT-European Platforms

MW2MW Middleware-to-Middleware

N2N Networking-to-Networking

ODPA Ontology Design & Patterns

ODPs Ontology design patterns

OWL Web Ontology Language

PCS Port Community System

QoS Quality of service

REST Representational State Transfer

RDF Resource Description Framework

SDN Software-defined networking

SOA Service-Oriented Architecture

SotA State-of- the-Art

SSL Secure Sockets Layer

UML Unified Modeling Language

D5.1: Design Patterns for Interoperable IoT Systems

10

D5.1: Design Patterns for Interoperable IoT Systems

11

1 Introduction

Design patterns provide the most effective solutions, used and tested many times. Therefore,

it was necessary to select an appropriate set of design patterns in order to design and

develop approaches defined in WP3, WP4 and WP6. It was necessary to take into account

every INTER-IoT element, i.e. INTER-LAYER (D2D, N2N, MW2MW, AS2AS, DS2DS, and

CROSS-Layer), INTER-FW, INTER-Health and INTER-LogP.

During the process of designing INTER-IoT elements (INTER-LAYER, INTER-FW, INTER-

Health, and INTER-LogP)[1], most issues did not bring the difficulties and were able to solve,

using the already defined, well known approaches. However, it was not possible with some

problems. The reason of this was that every INTER-IoT element generates the specific

approach to the problem. Specific, means typical for the INTER-IoT paradigms. The most

common and problematic aspects were: architecture, interoperability, integration and

communication. Therefore, it was necessary to prepare new design patterns (INTER-IoT

Layer Patterns). Most of them are modifications of existing solutions, but some of them are

brand new approaches. The section titled “INTER-IoT issues and solutions (final patterns

catalog)”describes in details the issues that have arisen and explain the solution, designed to

solve them.

1.1 Definitions and terminology

Table 1: Important definitions

Term Definition

Design pattern

 A general reusable solution to a problem that recurs repeatedly within a given
context in software design. It is a written document (template) describing how
to solve a problem that can be used in many different situations. Design
patterns are formalized best practices. The purpose is to increase re-use and
quality of code and at the same time reduce the effort of development of
software systems.

Pattern system

 A pattern system is a cohesive set of related patterns which work together to
support the construction and evolution of whole architectures. It describes
many interrelationships between the patterns and their groupings and how they
maybe combined and composed to solve more complex problems.[2]

Pattern language
 A collection of patterns and the rules to combine them into an architectural
style. Pattern Languages describe software frameworks or families of related
systems. [3]

Pattern catalog
 A collection of related patterns, where patterns are subdivided into a small
number of broad categories, which usually include some amount of cross
referencing between patterns. [2]

Ontology Explicit specification of shared conceptualization.

Ontology alignment

The process of finding of correspondences between two or more ontologies.
The result of this process is an alignment of a set of correspondences between
entities (atomic alignment) or groups of entities and sub-structures (complex
alignment) from different ontologies. A correspondence can be either a
predicate about similarity, called a matching, or a logical axiom mapping.

1.2 INTER-IoT Design Patterns defining process – methodology

The process of defining the INTER-IoT Layer Patterns is depicted in Figure 1. The final set of

patterns is a result of research of already existed solutions, good practices and also

knowledge and experience of specialists working on the INTER-IoT project.

D5.1: Design Patterns for Interoperable IoT Systems

12

Figure 1: INTER-IoT Design Patterns creation process

First step of INTER-IoT Layer Patterns definition process was state-of-the-art study

(described in details in Section: “State of the art - research and analysis”). The main goal of

this step was to examine the common, well known pattern catalogs (object-oriented Patterns,

integration patterns, reactive patterns, agent design patterns, ontology patterns, IoT patterns,

security patterns, use case patterns) and extract the knowledge (e.g. verify the applicability

to the IoT domain) useful to define an INTER-IoT Design Patterns.

On the basis of SotA conclusions, the next step was to define an initial set of INTER-IoT

Design Patterns. It was decided, that draft template should provide a subcategorisation for

INTER-LAYER (D2D, N2N, MW2MW, AS2AS, DS2DS, CROSS-Layer), INTER-MW, INTER-

Health and INTER-LogP. After extraction of the initial set of patterns, a detailed analysis was

made. The main idea was to extract the patterns that directly corresponding to the integration

solutions, already achieved in the WP3. Therefore, the set of patterns has been narrowed

down to a smaller number of entities. Moreover, in final version, the design patterns template

structure was changed in a way to describe the content in a more clearer form.

Section “INTER-IoT patterns catalog” shows the output result of all the design patterns

creation process, i.e. defining initial set of patterns, analysis and refinement and the final

product.

2 State of the art - research and

analysis

Design patterns provide a way to build an end-to-end solution in well-specified ways and to

provide an understanding of the use of different components of the system in a system

context. A specific architecture can be constructed from a set of design patterns, and from

this the (dynamic) behaviour of the system may be modelled and analyzed.

In the following subsections we introduce pattern catalogs that address different issues to be

considered when designing IT solutions, from data modelling to architectural patterns.

D5.1: Design Patterns for Interoperable IoT Systems

13

Among these we will try to identify patterns that can be potentially reused in our context, or

that can provide an inspiration for the definition of new design patterns. It should be noted,

that we are particularly interested in patterns for achieving interoperability between platforms

in the IoT domain. Interoperability can be defined as the ability of two or more systems or

components to exchange data and use information, so in most cases we will be interested in

communication/ integration/ interoperability patterns that should support the design and

development of an integrated IoT platforms ecosystem.

Specifically, we are interested in design patterns for:

 integration of IoT platforms,

 communication of IoT platforms,

 security,

 architecture of software components, required to provide interoperability, that should

be implemented for specific deployment,

 domain use case solutions.

2.1 Object-oriented Patterns “Gang of Four”

In 1994, the publication of the book [4] explained the usefulness of patterns and resulted in

the widespread popularity for design patterns. The authors together are referred to as the

Gang of Four (GoF). The authors documented the 23 patterns classified into three groups

and two scopes ([4][5]):

 Creational Patterns: Used to construct objects so that they can be decoupled from

their implementing system. They help make a system independent of how its objects

are created, composed, and represented.

 Structural Patterns: Used to form large object structures between many disparate

objects. They are concerned with how classes and objects are composed to form

larger structures.

 Behavioral Patterns: Used to manage algorithms, relationships, and responsibilities

between objects.

 Object Scope: Deals with object relationships that can be changed at runtime.

 Class Scope: Deals with class relationships that can be changed at compile time.

In [6] GoF are interviewed and give the following remarks about their original work. The

originally used pattern description template was sufficient for low-level object-oriented

patterns like the ones in the book. It was not good for other purposes, that resulted in

creation of new templates for other purposes. Every collection of patterns needs a standard

template, but no template will ever be good for all patterns. GoF had suggested some

changes to the original catalog.

2.1.1 Analysis of GoF

Object-oriented patterns, proposed by GoF, form the basis in software engineering design

patterns and serve as an important source for object-oriented design theory and practice.

However, it should be noted that they address only object-oriented programming. They are

sufficient to model internal architecture of a software system, but they are not enough to

model integration or communication between components that are crucial in distributed

domains such as IoT. In the scope of our work, GoF should be considered as reference

when there is a need to provide design patterns for a software component that needs to be

developed during IoT platforms integration to achieve interoperability.

D5.1: Design Patterns for Interoperable IoT Systems

14

The valuable input of GoF is the pattern specification template that was also reused by other

initiatives. It is described in details in section“Pattern Forms”.

2.2 Integration Patterns

The most notable work in the integration patterns field is a classic book by Gregor Hohpe

and Bobby Woolf [7] that describes 65 design patterns (divided into 7 categories) for the use

in enterprise application integration and message-oriented middleware. The patterns provide

technology-independent design guidance for developers and architects to describe and

develop robust integration solutions. Specifically, these patterns are also applicable to IoT

domain where platforms are integrated with message-based communication.

Integration patterns model the flow of a message from one system to the next through

channels, routing, and transformations, and are implemented in software such as ESB,

Apache Camel, Mule ESB, Red Hat JBoss Fuse etc.

2.2.1 Enterprise Integration Patterns

Integration patterns classification is as follows[8] (underlined pattern is a base in a category):

Table 2: Enterprise Integration Patterns

Pattern category Description Patterns

Integration Styles Different ways applications can be

integrated, providing a historical

account of integration technologies.

 File Transfer

 Shared Database

 Remote Procedure
Invocation

 Messaging

Messaging Channels How messages are transported

across a message channel (virtual

pipe that connects a sender to a

receiver); implemented by most

commercial and open source

messaging systems.

 Message Channel

 Point-to-Point Channel

 Publish-Subscribe
Channel

 Datatype Channel

 Invalid Message
Channel

 Dead Letter Channel

 Guaranteed Delivery

 Channel Adapter

 Messaging Bridge

 Messaging Bus

Messaging Patterns Describe the intent, form and

content of the messages that travel

across the messaging system.

 Message

 Command Message

 Document Message

 Event Message

 Request-Reply

 Return Address

 Correlation Identifier

 Message Sequence

 Message Expiration

 Format Indicator

D5.1: Design Patterns for Interoperable IoT Systems

15

Pattern category Description Patterns

Messaging Routing How messages are routed from a

sender to the correct receiver;

message routing patterns consume

a message from one channel and

republish it message, usually

without modification, to another

channel based on a set of

conditions.

 Pipes and Filters

 Message Router

 Content-based Router

 Message Filter

 Dynamic Router

 Recipient List

 Splitter

 Aggregator

 Resequencer

 Composed Message
Processor

 Scatter Gather

 Routing Slip

 Process Manager

 Message Broker

Message Transformation How the content of a message can

be changed, for example to

accommodate different data formats

used by the sending and the

receiving system; data may be

added, removed or rearranged.

 Message Translator

 Envelope Wrapper

 Content Enricher

 Content Filter

 Claim Check

 Normalizer

 Canonical Data Model

Message Endpoints How messaging system clients

produce or consume messages.

 Message Endpoint

 Messaging Gateway

 Messaging Mapper

 Transactional Channel

 Pooling Consumer

 Event-driven Consumer

 Competing Consumers

 Message Dispatcher

 Selective Consumer

 Durable Subscriber

 Idempotent Receiver

 Service Activator

System Management Describe the tools to keep a

complex message-based system

running, including dealing with error

conditions, performance bottlenecks

and changes in the participating

systems.

 Control Bus

 Detour

 Wire Tap

 Message History

 Message Store

 Smart Proxy

 Test Message

 Channel Purger

2.2.1.1 Analysis of Enterprise Integration Patterns

Enterprise Integration Patterns are widely accepted and implemented in many software

solutions. They provide guidance when integrating systems or designing a distributed

systems. Since INTER-IoT is focused on interoperability, some patterns from these groups

shall be identified in the architecture, specifically, cooperation between components.

Selected patterns from integration patterns should be identified in the proposed architecture

of interoperable IoT Platforms. Patterns from “Message transformation”, “Messaging

Patterns”, “Messaging Routing”, are candidates to be applicable e.g. in achieving INTER-IoT

artifacts interoperability.

D5.1: Design Patterns for Interoperable IoT Systems

16

2.2.2 SOA Patterns

SOA (Service-Oriented Architecture) stems from distributed computing paradigm and, as a

result, SOA design patterns[9], can be rooted in already existing pattern catalogs (Enterprise

Integration Patterns, Enterprise Application Architecture Patterns, Software Architecture

Patterns, Object-Oriented Design Patterns, etc.). SOA is a paradigm of a software design in

which services are provided to the other components by application components, through a

communication protocol over a network. Even though SOA approach is traditionally used to

couple functionality of heavyweight enterprise systems, it can as well become applicable to

embedded/smart devices.

Table 3 shows how design patterns reference SOA design principles. Design principles can

be understood as „meta-patterns” and can form a basis to structured analysis of the

proposed solution with respect to design patterns.

Table 3: Summary of SOA design patterns

Design Principle Related Design Patterns Description

Abstraction Capability Composition, Capability

Recomposition, Decomposed Capability,

Domain Inventory, Dual Protocols, Enterprise

Inventory, Entity Abstraction, Exception

Shielding, Inventory Endpoint, Legacy

Wrapper, Policy Centralization, Process

Abstraction, Service Perimeter Guard,

Service Refactoring, Utility Abstraction,

Validation Abstraction

"Service contracts only contain

essential information and

information about services is

limited to what is published in

service contracts."

Autonomy Canonical Resources, Capability

Composition, Capability Recomposition,

Composition Autonomy, Distributed

Capability, Dual Protocols, Event-Driven

Messaging, Process Centralization,

Redundant Implementation, Service Data

Replication, Service Normalization

"Services exercise a high level

of control over their underlying

runtime execution

environment."

Composability Agnostic Capability, Agnostic Sub-Controller,

Brokered Authentication, Capability

Composition, Capability Recomposition,

Composition Autonomy, Cross-Domain Utility

Layer, Data Confidentiality, Data Model

Transformation, Data Origin Authentication,

Direct Authentication, Domain Inventory,

Dual Protocols, Enterprise Inventory, Entity

Abstraction, Intermediate Routing, Logic

Centralization, Non-Agnostic Context,

Process Abstraction, Process Centralization,

Protocol Bridging, Reliable Messaging,

Service Callback, Service Decomposition,

Service Instance Routing, Service Layers,

State Messaging, Utility Abstraction

"Services are effective

composition participants,

regardless of the size and

complexity of the composition."

D5.1: Design Patterns for Interoperable IoT Systems

17

Design Principle Related Design Patterns Description

Discoverability Canonical Expression, Capability

Composition, Capability Recomposition,

Metadata Centralization

"Services are supplemented

with communicative metadata

by which they can be

effectively discovered and

interpreted."

Loose Coupling Asynchronous Queuing, Capability

Composition, Capability Recomposition,

Compatible Change, Compensating Service

Transaction, Concurrent Contracts, Contract

Centralization, Contract Denormalization,

Data Format Transformation, Decoupled

Contract, Dual Protocols, Entity Abstraction,

Event-Driven Messaging, File Gateway,

Intermediate Routing, Inventory Endpoint,

Legacy Wrapper, Messaging Metadata, Multi-

Channel Endpoint, Partial Validation, Policy

Centralization, Process Abstraction, Proxy

Capability, Schema Centralization, Service

Agent, Service Callback, Service

Decomposition, Service Facade, Service

Instance Routing, Service Messaging,

Service Perimeter Guard, Service

Refactoring, Trusted Subsystem, UI

Mediator, Utility Abstraction, Validation

Abstraction

"Service contracts impose low

consumer coupling

requirements and are

themselves decoupled from

their surrounding

environment."

Reusability Agnostic Capability, Agnostic Context,

Agnostic Sub-Controller, Capability

Composition, Capability Recomposition,

Composition Autonomy, Concurrent

Contracts, Cross-Domain Utility Layer, Data

Model Transformation, Entity Abstraction,

Intermediate Routing, Logic Centralization,

Multi-Channel Endpoint, Rules Centralization,

Service Agent, Service Layers, Utility

Abstraction

"Services contain and express

agnostic logic and can be

positioned as reusable

enterprise resources."

Statelessness Asynchronous Queuing, Atomic Service

Transaction, Capability Composition,

Capability Recomposition, Messaging

Metadata, Partial State Deferral, Process

Centralization, Service Grid, Service Instance

Routing, State Messaging, State Repository,

Stateful Services

"Services minimize resource

consumption by deferring the

management of state

information when necessary."

D5.1: Design Patterns for Interoperable IoT Systems

18

Design Principle Related Design Patterns Description

Standardized

Service Contract

Agnostic Capability, Asynchronous Queuing,

Canonical Expression, Canonical Protocol,

Canonical Schema, Canonical Versioning,

Capability Composition, Capability

Recomposition, Compatible Change,

Concurrent Contracts, Contract

Centralization, Contract Denormalization,

Data Format Transformation, Data Model

Transformation, Decomposed Capability,

Decoupled Contract, Distributed Capability,

Domain Inventory, Dual Protocols, Enterprise

Inventory, Event-Driven Messaging,

Inventory Endpoint, Legacy Wrapper,

Message Screening, Non-Agnostic Context,

Partial Validation, Policy Centralization,

Protocol Bridging, Schema Centralization,

Service Callback, Service Facade, Service

Messaging, Service Refactoring, State

Messaging, Termination Notification,

Validation Abstraction, Version Identification

"Services within the same

service inventory are in

compliance with the same

contract design standards."

Additionally, SOA patterns are grouped into the categories from Table 4. Design patterns

marked bold have been identified as interesting for INTER-IoT approach at the moment of

writing this SotA.

Table 4: SOA pattern categories

Category Design Patterns

Foundational Inventory

Patterns

Canonical Protocol, Canonical Schema, Domain Inventory1,

Enterprise Inventory2, Logic Centralization, Service Layers, Service

Normalization

Logical Inventory Layer

Patterns

Entity Abstraction, Process Abstraction, Utility Abstraction

Inventory Centralization

Patterns

Policy Centralization, Process Centralization, Rules Centralization,

Schema Centralization

Inventory Implementation

Patterns

Augmented Protocols, Canonical Resources, Cross-Domain Utility

Layer, Dual Protocols, Inventory Endpoint3, Service Grid, State

Repository, Stateful Services

Inventory Governance

Patterns

Canonical Expression, Canonical Versioning, Metadata

Centralization4

Foundational Service

Patterns

Agnostic Capability, Agnostic Context, Functional Decomposition, Non-

Agnostic Context, Service Encapsulation5

1 http://soapatterns.org/design_patterns/domain_inventory
2 http://soapatterns.org/design_patterns/enterprise_inventory
3 http://soapatterns.org/design_patterns/inventory_endpoint
4 http://soapatterns.org/design_patterns/metadata_centralization
5 http://soapatterns.org/design_patterns/service_encapsulation

D5.1: Design Patterns for Interoperable IoT Systems

19

Category Design Patterns

Service Implementation

Patterns

Containerization, Microservice Deployment6, Partial State Deferral,

Partial Validation, Redundant Implementation, Service Data

Replication, Service Facade, UI Mediator

Service Security Patterns Exception Shielding, Message Screening, Service Perimeter Guard,

Trusted Subsystem

Service Contract Design

Patterns

Concurrent Contract, Contract Centralization, Contract

Denormalization, Decoupled Contract, Validation Abstraction

Legacy Encapsulation

Patterns

File Gateway, Legacy Wrapper, Multi-Channel Endpoint

Service Governance

Patterns

Compatible Change, Decomposed Capability, Distributed Capability,

Proxy Capability, Service Decomposition, Service Refactoring,

Termination Notification, Version Identification

Capability Composition

Patterns

Capability Composition7, Capability Recomposition

Service Messaging Patterns Asynchronous Queing, Event-Driven Messaging, Intermediate Routing,

Messaging Metadata, Reliable Messaging, Service Agent, Service

Callback, Service Instance Routing, Service Messaging8, State

Messaging

Service Interaction Security

Patterns

Brokered Authentication, Data Confidentiality, Data Origin

Authentication, Direct Authentication

Transformation Patterns Data Format Transformation9, Data Model Transformation10,

Protocol Bridging

REST-inspired Patterns Entity Linking, Lightweight Endpoint, Reusable Contract

2.2.2.1 Micro-services

Micro-services are a modern interpretation of service-oriented architectures (SOA) used to

build distributed software systems.

Micro-service is a conceptual service design in which services are decomposed into atomic,

or at least smaller, functional components that can interact to compose the desired service.

They are usually implemented as replicable instances, with little or no state, which make use

of a REST API to present their functionalities to the other components.

Each micro-service instance runs as a separate process in a virtualized (or containerized)

environment that allows them to be started easily and with a minimum amount of additional

resources used, yet each service must be elastically scalable, resilient to failures,

composable, and complete.

The challenge of creating a micro-service solution is thus to be able to decouple the

functional components that make up a service or backend application, and to implement

6 http://soapatterns.org/design_patterns/microservice_deployment
7 http://soapatterns.org/design_patterns/capability_composition
8 http://soapatterns.org/design_patterns/service_messaging
9 http://soapatterns.org/design_patterns/data_format_transformation
10http://soapatterns.org/design_patterns/data_model_transformation

D5.1: Design Patterns for Interoperable IoT Systems

20

them as web services (ideally as a stateless services) using the most appropriate technology

available.

Each of the underlying micro-services can be replicated in order to cope with an increase in

the load for such particular service, by creating additional instances of said service. In turn,

when the load of that sub-service decreases significantly, the number of instances can be

reduced in order to avoid overprovision and minimizing operational costs.

Even though monolithic services can be also replicated, their lack of granularity might result

in less efficient scalability, since all internal components are replicated in the same

proportion, when perhaps only one of them is actually needed to be replicated.

2.2.2.2 Analysis of SOA Patterns

It can be noted that SOA patterns will be identified in INTER-IoT approach. It should be

stressed that these patterns relate to: (i) solutions within INTER-IoT AS2AS and D2D layers,

(ii) characteristics of services exposed by IoT platforms that want to join the ecosystem. We

are mainly interested in the former, since the latter can be treated as good practices for

designing system with SOA architecture.

The micro-services approach have the following advantages over monolithic designs and

implementations:

 Fine grained scalability (better use of resources),

 Smaller development projects (easier to manage, and more productive),

 Easier DevOps (containerization and continuous delivery friendly),

 Technology flexibility (can implement each service independently),

 Higher mobility (can be easily moved to best suiting infrastructure),

 More resilient to failures (fine grained replaceable parts).

On the other hand, potential problems of a micro-service design for some particular cases

are:

 Overall higher complexity,

 More complex backwards incompatible updates,

 Hard to define component boundaries (avoid nano-services antipattern),

 Problems with tightly coupled components,

 Expensive inter-process/machine communication (higher bandwidth usage),

 Additional communication latency,

 Can create communication barriers between teams.

We can try to counterbalance some of the mentioned problems by not separating logical

components that require a fast and wide communication channel between them, and

avoiding nano-services that increase the complexity of the system by separating the

application in one a few data-wise loosely coupled parts.

2.2.3 Service Orchestration

Composition of services [10][11] encompasses all those processes that create added-value

services, making different individual services work together in a sensible way and shows how

the composition has to act in order to integrate distributed components.

In particular, in the context of Internet of Things, service composition can be understood as

allowing for routes for the data to be treated before reaching an application or end-user, or as

agents requiring information or processes to other such agents. Such compositions can help

D5.1: Design Patterns for Interoperable IoT Systems

21

to provide more valuable information and actions than plain raw data, tailored to a particular

receiver or purpose.

Two core approaches in service composition can be identified, providing different means of

combining individual services, namely: orchestration paradigm (centralized service

composition approach) and choreography paradigm (distributed coordination). The goal is to

come up with the appropriate coordination paradigm in the IoT.

Orchestration[12] is the name of a design pattern authored by Thomas Erl, Brian Loesgen

and published as part of the SOA Design Patterns catalogue as one of the Common

Compound Design Patterns i.e. a coarse-grained pattern comprised of a set of finer-grained

patterns.

Orchestration is a service composition strategy based on the use of a central module that

controls all inputs and outputs of the atomic services (components) and perform the service

composition logic. This component is called the orchestrator and needs to have control over

all the services composing the business processes.

The service orchestration concept must do justice to the scalability issues typically found in

IoT systems, so that the concept has to take decentralised autonomous configuration,

organisation, management, and repairing capabilities into account. If these self-* properties

are reflected, a deployment in real world large scale systems becomes possible.

Service orchestration model outlines the phases of modelling, resolution, binding, and

execution of services.

2.2.3.1 Analysis of Orchestration Pattern

Service composition through orchestration is the main solution for service composition, if we

focus on other relevant IoT platforms. Most platforms offer service orchestration, however

centralized service orchestration has its limitations. Choreography is more appropriate as a

means of coordination among different organizations, with the changing contexts of the

augmented entities. Furthermore, it offers advantages in terms of scalability and resiliency.

However, the augmented entities must have more computing capabilities, more memory, and

more application logic implemented in order to execute more demanding business tasks.

Table 5: Selected IoT solutions service composition approach
IoT
platform/architecture

Orchestration Choreography Comment

FIWARE

x

Orchestration service inside the PaaS

generic enabler. This is based on

OpenStack Heat project

SOFIA2
x

API orchestrator within the API Manager

in 2.12

Sensinact

x

Composition and orchestration function

for easing the development of custom

business logic

UniversAAL

x

Service composition tool using

orchestration (one using OWL-S and

other based on JavaScript)

D5.1: Design Patterns for Interoperable IoT Systems

22

IoT
platform/architecture

Orchestration Choreography Comment

oneM2M

x

The main open implementation of the

OpenM2M standard, Eclipse OM2M,

does not have any implementation for

service orchestration

OpenIoT

x

Not define a component for service

orchestration itself, relying in applications

to develop their own service composition,

if needed.

IoT-A

 x

Define services, data model but

interoperability is weakly introduced.

Basic reference for IoT platforms,

including AIOTI and IoT-EPI.

Service orchestration is significant from the point of view of INTER-IoT due to the fact that it

can be applied in the context of AS2AS layer as a basic feature, similar to most of the IoT

platforms analysed.

2.2.4 System test setup, Test applications and tooling

The test setup as described in this document should be present and checked for

completeness. See Table 5 for the system setup.

2.3 Reactive Patterns

Systems that are responsive, resilient, elastic and message-driven are called Reactive

Systems. Following the Reactive Manifesto[13] system design paradigm, several architecture

elements that are commonly found in reactive systems were identified including: circuit

breaker, various replication techniques, and flow control protocols. Reactive systems are

distributed, what requires new and modified architectural patterns, that may be based on

already existing code patterns and abstractions. Reactive patterns (defined in [14]) are

language-agnostic and also independent of the abundant choice of reactive programming

frameworks and libraries.

The paradigm of reactive systems is close to the architectural concepts behind IoT –

message-based distributed, asynchronous and reliable. The architecture of reactive system

is often based on micro-services which corresponding pattern is introduced in 2.2.7.

Reactive patterns are divided into six categories (Table 5).

D5.1: Design Patterns for Interoperable IoT Systems

23

Table 6: Reactive patterns summary

Pattern category Description Patterns (definitions from [14])

Fault Tolerance

and Recovery

Address how to incorporate

the possibility of failure into the

design of the application.

 Simple component- A component

should be only one thing, but do it in

full.

 Circuit breaker - Protect services by

breaking the connection to their users

during prolonged failure conditions.

 Let-it-crash - Prefer full component

restart to complex internal failure

handling.

 Error kernel - In a supervision

hierarchy keep important application

state or functionality near the root

while delegating risky operations

towards the leaves.

Replication The problem of how to

distribute the functionality of a

component such that it can

withstand hardware and

infrastructure outages without

loss of availability.

 Active-Passive - Keep multiple copies

of the service running in different

locations, but only accept

modifications to the state in one

location at any given time.

 Active-Active - Keep multiple copies of

a service running in different locations

and perform all modifications at all of

them.

 Multiple-Master - Keep multiple copies

of a service running in different

locations, accept modifications

everywhere and disseminate all

modifications among them.

D5.1: Design Patterns for Interoperable IoT Systems

24

Pattern category Description Patterns (definitions from [14])

Message Flow Communication that occurs

between reactive components.

 Request-Response - Include a return

address in the message in order to

receive a response.

 Self-contained Message - Each

message shall contain all information

needed to process a request as well

as to understand its response.

 Ask - Delegate the handling of a

response to a dedicated ephemeral

component.

 Forward Flow - Let the information and

the messages flow directly towards

their destination where possible.

 Aggregator - Create an ephemeral

component if multiple service

responses are needed in order to

compute a service call’s result.

 Saga - Divide long-lived distributed

transactions into quick local ones with

compensating actions for recovery.

 Business Handshake - Include

identifying and/or sequencing

information in the message and keep

retrying until confirmation is received.

Flow Control Address the issue of timeliness

of the communication.

 Pull - Have the consumer ask the

producer for batches of data.

 Managed Queue - Manage an explicit

input queue and react to its fill level.

 Throttling - Throttle your own output

rate according to contracts with other

services.

 Drop - Dropping requests is preferable

to failing uncontrollably.

State

Management and

Persistence

How component's state can be

managed.

 Sharding - Scale out the management

of a large number of domain objects by

grouping them into shards based on

unique and stable object properties.

 Domain Object - Separate the

business domain logic from

communication and state

management.

 Event Sourcing - Perform state

changes only by applying events,

make them durable by storing the

events in a log.

 Event Stream - Publish the events

emitted by a component so that the

rest of the system can derive

knowledge from them.

D5.1: Design Patterns for Interoperable IoT Systems

25

Pattern category Description Patterns (definitions from [14])

Resource

Management

Dealing with resources (file

storage space, computation

power, access to databases or

web APIs, physical devices

like printers or card readers,

etc.) in reactive applications.

 Resource Encapsulation - A resource

and its lifecycle is a responsibility that

must be owned by one component.

 Resource Loan - Give a client

exclusive transient access to a scarce

resource without transferring

ownership.

 Resource Pool - Hide an elastic pool of

resources behind their owner.

 Complex Command - Send compound

instructions to the resource to avoid

excessive network usage.

 Managed Blocking - Blocking a

resource requires consideration and

ownership.

2.3.1 Analysis of Reactive Patterns

Reactive patterns are applicable to any distributed application, and therefore should be

considered for INTER-IoT project. Messages, Message Flow and Flow Control are groups of

patterns that are candidates to guide the development of system components, abstracting

from the chosen technology. The advantage of reactive patterns is that they were described

in a semi-formal template proposed in [14], containing four sections: short introduction with

the problem setting (definition of task), guidelines of applying the pattern, the pattern

revisited and applicability.

2.4 Agent Design Patterns

Agent design patterns were developed in the scope of multi-agent systems i.e. a system

composed of multiple interacting intelligent, and autonomous agents. Agent patterns can also

be used between non-agent systems as the agent metaphor could be considered as a

design metaphor and not an implementation one. Thus, if we substitute the word “agent” with

the word “component”, “system”, or “subsystem”, we can analyze the patterns as applicable

to generic distributed systems.

Agent interaction design represents a very important stage during the design process of an agent-

based distributed system as it influences the efficiency of the developed agent system. As it initially

happened for the agents behaviour design, the use of patterns (see Table 7) to drive the agent

interaction design is notably increased and a lot of contributions have been provided in literature

[15][16][17][18][19][20]. On the other hand, several coordination models [21] have been introduced

in literature to allow the agents’ interaction design according to specific interaction scenarios.

Table 7: Software agent patterns

Authors Pattern Description

Aridor and Lange Meeting Provides a way for two or more agents to initiate local

interaction at a given host.

Locker Define a private storage space for data left by an agent

before it is temporarily dispatched (send) to another

destination.

D5.1: Design Patterns for Interoperable IoT Systems

26

Authors Pattern Description

Messenger Defines a surrogate agent to carry a remote message from

one agent to another.

Facilitator Define an agent that provides services for naming and

locating agents with specific capabilities.

Organized Group Compose agents into groups in which all members of a

group travel together.

Kendal et al. Conversation Concerns with a sequence of messages between two

agents, taking place over a period of time: agent messaging

may occur within a context established by previous

messages.

Facilitator Allows for interaction among agents which do not have to

have direct knowledge of one another as it is based on a

Mediator agent which provides a gateway or clearing house

for agent collaboration.

Agent Proxy Enables agents to collaborate directly with one another

through a proxy agent which provides distinct interfaces

and allows agent to be engaged in multiple conversations.

Protocol Establishes conversation policies that explicitly characterize

communication sequences.

Emergent Society Enables reactive agents to collaborate without known

protocols as actions performed by agents can stimulate

behaviour of neighbour agents.

Deugo et al. Blackboard Decouples interacting agents from each other as instead of

communicating directly, agents interact through an

intermediary which provides both time and location

transparency to the interacting agents.

Meeting Allows for interaction among agents without the need for

explicitly naming among them as they know a meeting point

in which agent can coordinate themselves through a

statically located agent.

Market Maker Allows for interaction among agents through a third party

agent which takes an active role in the coordination process

enforcing the house rules of agent interaction.

Master/Slave Allows for vertical coordination which is used to coordinate

the activity of a delegating agent and two or more delegated

agents in which delegated agents carry out a subtask for

delegating agent.

Negotiating

Agents

Deals with the situation where the interacting agents appear

as peers to each other, but need to align their actions for

some reason.

There is by now a growing literature on the use of patterns to capture common design

practices for agent systems [20][22][23]. In the following, some pattern-based agent design

approaches, which also cover issues related to the design of interaction among agents, are

summarized (see Table 7 for a brief description of each proposed patterns).

D5.1: Design Patterns for Interoperable IoT Systems

27

Aridor and Lange [15] describe a set of domain-independent patterns for the design of mobile

agent systems. They classify mobile agent patterns into travelling, task, and interaction

patterns and propose some patterns belonging to each the classes. Patterns in the travelling

class specify features for agents that move between various environments, patterns of the

task class specify how agents can perform tasks and patterns of the interaction class specify

how agents can communicate and cooperate. In particular, with reference to the interaction

patterns authors present the following ones: Meeting, Locker, Messenger, Facilitator, and

Organized Group which concern with locating agents and facilitating their interactions.

Kendall et al. [17] capture common building blocks for the internal architecture of agents in

patterns. Authors suggest a seven-layer architecture pattern for agents, and sets of patterns

belonging to each of the layers. The presented seven layers are: mobility, translation,

collaboration, actions, reasoning, beliefs and sensory but the exact number of layer may

vary. Compared to the previously mentioned pattern classification scheme in the work by

Aridor and Lange, the layered architecture has a similar logical grouping of patterns. The

mobility layer together with the translation layer corresponds to the class of travelling, the

collaboration layer corresponds to the class of interaction, and the actions layer corresponds

to the class of task. In particular, with reference to the interaction patterns authors present

the following ones: Conversation, Facilitator, Agent Proxy, Protocol and Emergent Society

which concern how agents cooperate and work with other agents. The main difference

between this and the previously mentioned approaches for mobile agents, is that this one

aims to cover all main types of agent design patterns.

Deugo et al. [16] identify a set of patterns for agent coordination, which are, again, domain-

independent. Authors classify agent patterns into architectural, communication, traveling, and

coordination patterns. Moreover, they identify an initial set of global forces (Mobility and

Communication, Standardization, Temporal and Spatial Coupling, Problem Partitioning and

Failures) which are different types of criteria that engineers use to justify their designs and

implementations. In particular, with reference to the coordination patterns authors present the

following ones: Blackboard, Meeting, Market Maker, Master/Slave and Negotiating Agents

which are well-documented solutions to recurrent problems related to the coordination

among agents.

Kolp et al. [24] propose a catalogue of architectural styles and agent patterns for designing

MAS architectures at a macro- and micro- level adopting concepts from organization theory

and strategic alliances literature. Although interesting, these patterns define how goals

assigned to actors participating in an organizational architecture will be fulfilled by agents

without focus on coordination issues.

2.4.1 Analysis of Agent Design Patterns

On the basis of the introduced design patterns (see Table 7), we can state that they could be

used to allow integration, interconnection, and interaction between agent-based and non-

agent software components and systems.

In particular, the Facilitator and Agent Proxy patterns by Kendall [17] can be useful/effective

to respectively support the design of a Gateway and a Proxy between two subsystems or

layers of IoT systems (please refer also to INTER-LAYER).

More specifically:

 Facilitator: allows for interaction among system components that do not have to have

direct knowledge of one another as the interaction is based on a Mediator component

that provides a gateway or clearing-house for collaboration among systems.

D5.1: Design Patterns for Interoperable IoT Systems

28

 Proxy: enables systems to collaborate directly with one another through a proxy that

provides distinct interfaces and allows such systems to be engaged in multiple

conversations.

2.5 Ontology Patterns

Ontology design patterns are a reusable successful solutions to a recurrent (ontology)

modeling problem. In [25] authors propose the use of semantic patterns to engineer

ontologies while remaining independent from the underlying ontology language. The library

of ontology patterns is still being developed, contrary to software engineering patterns where

a set of coherent and consensual patterns is already available.

There are several initiatives that are working on and preparing catalogs of ontology design

patterns. Naturally, their outcomes contain similarities, however, in the following sections

they are presented separately.

2.5.1 ODP Wiki

OntologyDesignPatterns.org[26] is a Semantic Web portal dedicated to ontology design

patterns (ODPs), and started under the NeOn Project. It is run by Association for Ontology

Design & Patterns (ODPA). The Wiki contains list of patterns grouped into catalogs. Patterns

can be submitted by users, and after review that change status from proposed to certified.

Unfortunately, many of the pattern catalogs are at the moment empty. The following patterns

descriptions come from the ODP Wiki website (note that some of them are empty at the

moment of writing):

Table 8: ODP Wiki patterns summary

Catalog Description Subcatalogs

Content For solving design problems for the domain classes

and properties that populate an ontology; content-

dependent.

Correspondences Include reengineering (provide designers with solutions

to the problem of transforming a conceptual model)

and alignment patterns (creating semantic associations

between two existing ontologies).

 Reengineering

 Alignments

Presentation Usability and readability of ontologies from a user

perspective.
 Naming

 Annotation

Reasoning Logical patterns oriented to obtain certain reasoning

results.

Lexico-syntactic Linguistic structures or schemas that consist of certain

types of words following a specific order, and that

permit to generalize and extract some conclusions

about the meaning they express.

Structural Logical patterns help to solve design problems where

the primitives of the representation language do not

directly support certain logical constructs; architectural

patterns affect the overall shape of the ontology.

 Logical

 Architectural

2.5.2 Ontology Design Patterns Public Catalog

This is a public catalog of ODPs focused on the biological knowledge domain[26].

D5.1: Design Patterns for Interoperable IoT Systems

29

The following patterns descriptions come from the website:

Table 9: Ontology Design Public Catalog patterns summary

Catalog Description Patterns

Extension By-pass the limitations of OWL.  Nary Datatype Relationship

 Exception

 Nary Relationship

Good practice Obtain a more robust, cleaner and

easier to maintain ontology.
 Entity Feature Value

 Selector

 Normalization

 Upper Level Ontology

 Closure

 Entity Quality

 Value Partition

 Entity Property Quality

 Defined Class Description

Domain modeling Solutions for concrete modelling

problems in biology.

 Out-of-scope

The group maintains a list of Semantic Web applications and demos for promoting the

Semantic Web and for use by developers with the aim to provide hands-on support for

developers of Semantic Web applications. The aim of the task force is to provide guidance

for developers of Semantic Web applications. In particular, it focuses on the engineering of

semantic web ontologies, through the publication of notes that document common and

reusable ontology patterns, and general ontology engineering best practices. At the moment

of writing, only three documents were published (in 2004): Representing Classes as Property

Values on the Semantic Web, Representing specified Values in OWL “value partition” and

“value sets”, Defining N-ary Relations on the Semantic Web: Use with Individuals.

2.5.3 Publications

In [27] authors focus on patterns in the field of Ontology Engineering and proposes a

classification scheme for ontology patterns. The scheme divides ontology patterns into five

levels:

 Application Patterns - Purpose, scope, usage and context of the implemented

ontology, including interfaces and relations to other systems. No Application Patterns

have so far been formalised for ontologies, as noted earlier, but there exist many

models of ontology usage.

 Architecture Patterns - A description of how to combine or arrange implemented

Design Patterns in order to fulfill the overall goal of the ontology.

 Design Patterns - A small collection of Semantic Patterns that together create a

common and generic construct for ontology development.

 Semantic Patterns - Language independent description of a certain concept, relation

or axiom. A meta-description of a Syntactic Pattern.

 Syntactic Patterns - Language specific ways to arrange representation symbols, to

create a certain concept, relation or axiom.

There are some ontology pattern approaches present at the moment of writing, but these are

mostly connected to the lower levels, such as Syntactic Patterns, Semantic Patterns, and

Design Patterns.

D5.1: Design Patterns for Interoperable IoT Systems

30

In [28] author presents a framework for introducing design patterns that facilitate or improve

the techniques used during ontology lifecycle. The proposed framework and the initial set of

patterns are designed in order to function as a pipeline connecting domain modelling, user

requirements, and ontology-driven tasks/queries to be executed. Conceptual Ontology

Design Patterns (CODePs) have been introduced as a useful resource and design method

for engineering ontology content over the Semantic Web. CODePs are distinguished from

architectural, software engineering, and logic-oriented design patterns, and a template has

been proposed to describe, visualize, and make operations over them.

2.5.4 Alignment Patterns

Based on ontology mismatches discussed in literature, patterns in correspondences can be

identified and modeled. Patterns can be organized hierarchically according to their degree of

generality. The deeper a pattern in the hierarchy, the more specialized for a specific problem.

Specialization is reflected in the representation of the patterns using the alignment

representation language. In the classification proposed in [29], authors define a hierarchy

with top composed of the three basic patterns between classes, relations, and attributes.

Then, each type of pattern is refined between equivalence, or subsumption patterns, and

patterns specific for the entities types. These research has been started as PhD thesis but is

declared to be continued through ontology community portal [30]

Pattern template selected by the authors follows [4] and [25] and includes information divided

into two parts: classical elements (name, problem, solution, consequences) and grounding

part (name of target language/system, applicability, purpose, example grounding, comment).

Ontology alignment patterns are represented using Expressive Declarative Ontology

Alignment Language (EDOAL) [31].

2.5.5 Analysis of Ontology Patterns

The ontology design patterns should be considered in this research because of the INTER-

IoT requirement to provide interoperability on data and semantic. The approach evaluated in

INTER-IoT is based on ontologies and semantic translation using ontologies alignments.

Therefore, IoT platforms are required to have semantic model of exchanged data, and

alignments should be constructed during the process of integration. These activities should

be guided by a collection of design patterns for ontology and alignment modeling. Moreover,

the interoperability on DS2DS layer assumes the existence of central ontology that is specific

to each deployment. Design patterns can be considered as references in the description of

the structure of this ontology.

Even though the classification of ontology design patterns is relatively extensive, this area of

research is still under development. There are at least three independent catalogs with

varying structure and pattern description template (ODP Wiki and ODP Public Catalog

provide structures for pattern specification).

Alignment patterns are discussed in [29], where authors declare that the work will be

extended through the ontology community portal [32]. Unfortunately, many patterns present

in the hierarchy are not available through portal, and the one present are in proposed and not

certified status.

2.6 IoT Patterns

Internet of Things (IoT) systems and applications present design problems in many areas

and at many layers (device, network, middleware, application service, data and semantics).

There are many diverse use cases, with different resource constraints, and with many

D5.1: Design Patterns for Interoperable IoT Systems

31

different standards, products, and technologies available. How do we determine which are

suitable, what the specific pros and cons are without a context from which to evaluate their

use?

First, there are some principles that should be met while designing an IoT solution

architecture [33]:

1. The ability to ingest massive amounts of events and data generated by IoT devices.

2. Secure, real-time, two-way communication, control channel that can be initiated by

either party and that guarantees to ensure the delivery of commands.

3. Communication channels supporting loose-binding between message senders and

receivers due to possible intermittent connectivity.

4. Devices that do not support the IP stack shall integrate using an IoT Gateway.

5. The ability to process data streams in real-time (the hot path) or post-facto (the cold

path).

6. Devices should sent periodically a heartbeat or a keep-alive signal.

7. The ability to incrementally upgrade firmware.

8. Presence of the device registry to keep track of all deployed devices.

Of course, INTER-IoT fulfills all these requirements (which is described in deliverables of

WP3 and WP4). Therefore, this pattern catalog is full of inspirations for INTER-IoT Layer

Patterns. There are many patterns to consider, which can be presented as a few main

pattern subcatalogs:

 Design Patterns for Connected Things[34]. “They represent the fundamental

propositions of an Internet of Things that involves connecting things through networks

and software…”.

 Design Patterns for Information Model[34]. “They consist of lower layers of data

models and representation, upon which higher level encapsulation and functions are

built.”

 Design Patterns for Interaction[34]. “They describe how different parts of a system

interact and communicate with each other, including communication protocols.”

 Design Patterns for Application Programming[34]. “They describe ways that

software and interfaces are created, managed, deployed, and used in IoT

applications…”.

 Design Patterns for IoT Infrastructure[34]. “They describe how different network

and device technology is used to solve problems with the physical infrastructure of

IoT. How do low power devices connect to wireless sensor networks and ultimately

connect to services and applications…”.

 Design Patterns for IoT Security[34]. “They describe design patterns for IoT

security problems”.

 Edge-based IoT Design Pattern[35]. Low-level patterns for designing edge-based

IoT systems.

 Edge Provisioning Pattern. Setting up the system and getting the devices

connected are hard to simplify, devices may use different types of networks and

various connectivity models, so Edge Provisioning Pattern is a design challenge for

automated provisioning[36][30].

Many patterns, from catalogs described above, were useful in designing INTER-IoT

mechanisms, but in the process of creating new INTER-IoT Layer Patterns, the most

inspiring was “Design Patterns for Interaction” subcatalog, because new solutions, solved

mainly communication issues. In [34] some examples were presented:

D5.1: Design Patterns for Interoperable IoT Systems

32

 Request/Response: probably the most commonly known communication pattern. It

consists of a client, that requests a service from a server. This is the pattern that

HTTP uses, and it’s the basis for service­ oriented architecture, web services, and

Representational State Transfer.

 REST: Representational State Transfer, design pattern allowing for externalization of

application state in reusable, shareable resources.

 Asynchronous Events: State updates propagate through the system as they occur.

 Resource Binding: Associating a resource with an action, bridges REST to

Asynchronous Events.

 Observer Pattern: A binding of resource updates to a protocol action or handler.

 Publish/Subscribe: A communication pattern where a client registers interest in a

topic by subscribing, updates to a topic are published to all subscribers (i.e.

notification).

 Broker: A central service to connect publishers with subscribers.

 Proxy: A machine that provides an interface on behalf of another interface.

 Protocol Bridge: A bidirectional translator between two protocols.

 Resource Discovery: A process where resources are found by specifying attributes.

 Resource Registration: An endpoint informs a resource directory of its resources.

 Sleeping/Non-reachable Endpoint: An endpoint is not reachable and must participate

in protocol by initiating all interactions with reachable or always-on endpoints.”

Worth for attention is also section “Design Patterns for IoT Security”, because security

aspects are also considered in INTER-IoT. In [34] following examples were described:

 Access control using data models: semantic hyperlinks control access to resources

based on the embedded metadata.

 Social to physical graph relationship: well defined concepts of ownership and access

delegation between people, entities, and things.

 PGP and asymmetric public-key cryptography on devices: ways of creating SSL

sessions and signing data between devices and applications.

 DTLS over UDP: security for resource constrained devices.

 End-to-end encryption: transmitting and storing encrypted data independent of

channel encryption.

 Device Management: using device identity, registration, and secure key exchange.”

2.6.1 Analysis of IoT Patterns

It can be observed that there is no one reference architecture solution for the IoT, but rather

many approaches depending on use cases. The patterns identified in [34] and quoted in

previous sections form a collection of concepts that are common to IoT solutions, and

provide opportunities for standardization and commonality. Optimally, architecture should be

reusable within a particular class of use cases. Therefore it makes sense to talk about IoT

architecture as a set of Design Patterns, working together to achieve an end-to-end solution

for some problem. Patterns introduced so far are not well-formalized using typical design

patterns template [2][4]; although, they could be reused at some extent, they need to be first

formalized to be really useful in a systematic way. There are indeed other patterns for IoT

development recently proposed [35]: they are formalized using canonical design patterns

template. However, it is worth noting that none of such proposals (high-level design patterns

and low-level edge-based design patterns) are related to how to integrate already existing

IoT systems/ application so granting interconnection/ interoperability, but rather they are

focused on the development, deployment and execution of (new) IoT systems. Nevertheless,

it is worth to notice, the “Design Patterns for Interaction” catalog can be inspiration for

D5.1: Design Patterns for Interoperable IoT Systems

33

designing the patterns, related with INTER-IoT artifacts communication, and in general

handling messages mechanisms. Moreover, “Design Patterns for IoT Security” is worth to

consider in the designing security aspects in CROSS-layer and also in INTER-Health (where

security and data confidentiality are particularly important).

2.7 Security Patterns

Design patterns can be also considered in the area of security where goals to be fulfilled are

among others: confidentiality, integrity, and availability. The secure IoT deployments can use

some of the existing security technologies already on the market, however, the IoT also

introduces new challenges to security engineering that need to be addressed.

The following not IoT specific security patterns catalogs are available:

 Core Security Patterns[37] - guidance for Java applications, XML Web Services,

Identity Management and Identity provisioning. Their aim is delivering end-to-end

security of a J2EE based application architecture and representing how it is related in

aspects of role and responsibilities in various components and logical tiers - such as

Web Tier, Business Tier, Web Services Tier, and Identity Tier. A lot of core security

patterns are strictly related to GoF and Core J2EE Patterns.

 The Open Group Security Design Patterns[38] - technical guides to security design

patterns are produced, including a catalog of design patterns for IT system architects

and designers to use in verifying the completeness of designs and in designing

coherent extensions to existing IT systems.

 Munawar Hafiz and colleagues with Ward Cunningham and Microsoft Patterns and

Practices group catalog[39] - 97 security patterns written by all security experts

starting from the first work on security patterns in 1997 organized into hierarchical

structure.

A survey on general security patterns was given in [40], in which authors classified the

patterns from the software life cycle point of view and indicated future research direction.

Patterns are described using template proposed in [41]. They are divided into requirements

(analysis and model based patterns), design and implementation phase patterns. The paper

contains valuable references to patterns proposed in other publications.

2.7.1 Analysis of Security Patterns

In [42][43][44][45] considerations and approaches for security in IoT are presented, however

these are not in the form of design patterns. The challenges for IoT include: lack of mature

IoT technologies and business patterns, limited guidelines on life cycle maintenance and

device management, protection of edge devices, a lack of standards for authentication and

authorization of IoT edge devices, lack of control and information asymmetry (complex

dataflows management). Authors of [44] provide recommendations and guidelines for

protection of IoT architecture, specifically network, application, device, physical and human

layers.

Note that part of the aforementioned SotA analysis is dedicated to security in IoT platforms,

and not security patterns in providing interoperability within IoT platforms. These two use

cases should be separated since the goal of INTER-IoT is not the design and development of

an IoT platform. From the INTER-IoT perspective, crucial aspects related to security are

authentication and authorization, as well as secure communication.

D5.1: Design Patterns for Interoperable IoT Systems

34

Besides solutions described in this section, there are also “Design Patterns for Interaction”,

described in section:“IoT Patterns”. All of this information was very useful in designing

security patterns for CROSS-layer and INTER-Health.

2.8 Use case specific patterns

Besides software engineering design patterns, we try to identify typical use cases/solutions in

the two INTER-IoT pilot application domains. It can be observed that particular sequences of

user intentions and system responsibilities re-occur as solutions to common problems. After

establishing common characteristics of the deployment environment it may be easier to

match design patterns that should be applied to achieve interoperability. Use case patterns

(rather analysis than design) can describe how the system level use case is mapped onto

high level design patterns, e.g. gateways and web services.

Even though there are no well-established Port Logistics and (e/m)Health design patterns,

some common concepts can be identified and some papers are available dealing with the

functioning of the port environment and the design of healthcare information systems. In the

following, we first briefly review available resources and then we provide some overall

insights.

2.8.1 Port Logistics - Port Digital Transformation Reference Model

Figure 2: Port Digital Transformation Reference Model

A port is like a virtual enterprise where an assortment of specialized companies comes

together to provide one face to the customer. In most cases the front-end company that

provides services to the port user is not necessary the organization that provides all the

underlying services. In fact, the port front-end reveals very little of the numerous processes,

document exchanges and organizational arrangements that go into the delivery of the

service.

An important number of actors take part in everyday port activities, serving the port traffic

directly or indirectly, such as shipping lines, terminal operating companies, customs, port and

maritime authorities, cross-border regulatory agencies and police, logistics service providers,

freight forwarders, carriers, etc. All these independent public and private actors make up the

“port community”, being considered each of them as a department of the same virtual

company tied together by a common interest in maritime transportation.

D5.1: Design Patterns for Interoperable IoT Systems

35

The nature of relationships among the actors in the port community is the key element for the

efficiency of the individual functions, port’s logistics system and the import and export trades

of a country.

In this sense, ICT tools, such as Single Windows or Port Community Systems, are a

resource of vital importance for effective and efficient performance of port activities.

2.8.2 Port Logistics – Geo-fence

Geo-fencing (geofencing) is a feature in a software program that defines geographical

boundaries. A geo-fence is a virtual perimeter for a real-world geographic area.

Programs that incorporate geo-fencing allow an administrator to set up triggers so when a

device enters (or exits) the boundaries defined by the administrator, an event or action will be

generated. So, for example, this activity could trigger an alert to the device's user, which

could contain the location of the device, could be sent to a mobile telephone or an email

account.

Many geo-fencing applications incorporate standard application as Google Earth, allowing

administrators to define boundaries on top of a satellite view of a specific geographical area.

Other applications define boundaries by longitude and latitude or through user-created and

Web-based maps.

Figure 3: Geo-fencing zones

The technology has many practical uses:

 Fleet management.

 Human resource management.

 Compliance management.

 Security strategy model.

Technology:

 Global positioning system (GPS).

 Radio frequency identification (RFID).

 Bluetooth beacons.

D5.1: Design Patterns for Interoperable IoT Systems

36

2.8.3 Port Logistics – Automatic identification and data capture

Automatic Identification and Data Capture (AIDC) is a broad category of technologies used to

collect information from an individual, object, image or sound without manual data entry.

AIDC is the process or means of obtaining external data, particularly through analysis of

images, sounds or videos. To capture data, a transducer is employed which converts the

actual image or a sound into a digital file. The file is then stored and at a later time it can be

analyzed by a computer, or compared with other files in a database to verify identity or to

provide authorization to enter a secured system. Capturing of data can be done in various

ways; the best method depends on application. AIDC also refers to the methods of

recognizing objects, getting information about them and entering that data or feeding it

directly into computer systems without any human involvement.

AIDC systems are used to manage inventory, delivery, assets, security and documents.

Sectors that use AIDC systems include distribution, manufacturing, transportation, medicine,

government and retail, among many others.

Technologies typically considered as part of AIDC include:

 Bar codes.

 Radio Frequency Identification (RFID).

 Biometrics.

 Magnetic stripes.

 Optical Character Recognition (OCR).

 Smart cards.

 Voice recognition.

2.8.4 Port Logistics – Port Community System

A Port Community System (PCS) can be defined as a platform for information exchanges

linked to a port, and therefore geographically restricted, which primarily seeks to serve the

interests of the various companies and entities linked to port activities. A relatively wide

variety of companies are involved, including terminal operators, transport operators

(maritime/oceanic, road and rail), freight forwarders, customs, cross border regulatory

agencies and port authorities (TrainForTrade 2009).

The main reason for creating port community systems is that port service users and

customers need an increasing amount information everyday to innovate in their own

processes. As a result, the transport sector must further its own metamorphosis and

formalise innovation processes. Such innovations in the transport sector should not only

contemplate the internal approach of each individual company, but look beyond this to see

the companies and other entities related to transport as links in one single chain where the

speed of the chain is determined by the slowest link. Therefore, all the parties involved in the

transport chain must make a firm commitment to innovation and technological innovation

processes to be prepared for the future.

Consequently, most companies are unable to tackle large innovations on their own

effectively. They must be carried out under the umbrella of cooperation by creating alliances

with companies and government bodies that are capable of handling such challenges. These

alliances or communities take two forms:

 Chain Alliances: where a series of entities that are not themselves competitors join to

cooperate in certain services to undertake innovation processes. One example is a

door-to-door service with certain special features; in these cases, an alliance would

D5.1: Design Patterns for Interoperable IoT Systems

37

be possible between an ocean carrier, their agents in the ports of origin and

destination respectively, an international freight forwarder and their representative

and a rail operator at origin and another at destination.

 Node Alliances: where companies and entities that work around the same node can

become allies. Two examples are a Port Community or a Logistics Platform in a given

area. One of the characteristics of this type of alliance is that they include companies

that are competitors, but which have joined forces to obtain a common goal. They are

known as “competitors”.

The European Port Community Systems Association (EPCSA) define the PCS concept as a

neutral and open electronic platform enabling intelligent and secure exchange of information

between public and private stakeholders in order to improve the competitive position of the

sea and air port’s communities. Moreover, this entity adds that these systems optimise,

manage and automate port and logistics efficient processes through a single submission of

data and connecting transport and logistics chain.

Essentially, PCSs respond to the need to focus on maximizing physical infrastructure and

managing the efficiency of the port operation as a whole. The system exists in an

environment in where an important number of stakeholders plays different role in the

transport chain.

In summary, PCS could be described as a “one-stop-shop” where all electronic shipment

transactions can be performed and the many actors in the cargo network are easily

accessible connecting both private and public stakeholders in a single communication

channel. Therefore, the PCS is ideally placed for becoming a backbone component of the

Single Windows environment (EPCSA 2011).

2.8.5 Port Logistics - The Single Window (SW) Concept

Single Window is a widely used term in the area of international trade and transport, and a

big effort has been made to define and describe this term and the associated concepts. The

idea of a Single Window challenges the conventional models of regulatory control of the

movement of goods and means of transport.

Single Window is not an IT system but a philosophy of governance in which traditional

structures of government are transformed into new arrangements that best serve the needs

of citizens and businesses. Under this approach, citizens and businesses would receive

government services through a single interface to government (WCO 2011).

The Single Window concept examines regulatory controls through the eyes of the port user

and views all interactions between transport, trade and regulatory agencies without regard

for the internal divisions within government institutions. This approach clearly brings out all

the procedural redundancies, duplication in the filing of information and the wastefulness

involved in the overall effort in fulfilling cross-border regulation. From this analytical approach

arise a set of solutions that greatly simplify government-trade interface by reorienting

procedures and reorganizing regulatory data requirements.

As concept’s summary, the United Nations (UN/ECE 2005) in the Recommendation 33

describes it as “a system that allows traders to lodge information with a single body to fulfil all

import- or export- related regulatory requirements”. This is the most widely acknowledged

definition.

This institution (UN) points that a Single Windows environment provides one entrance, either

physical or electronic, for the submission and handling of all data and documents related to

the release and clearance of an international transaction. This entrance is managed by one

D5.1: Design Patterns for Interoperable IoT Systems

38

agency, which informs the appropriate agencies, and/or directs combined controls. For this

reason, trade actors are strongly in favour of Single Window approaches because it creates

the visions of a dramatically simplified interface to Cross-border Regulatory Agencies

(CBRA), and in recent times, the value of SW, as a trade facilitation tool, has been increased

enormously.

Figure 4: Port Logistics - The Single Window (SW) Concept

2.8.6 (e/m)Health - Health Care Information Systems [46]

Health Care Information Systems (HCIS) raise some specific problems related to the

information requirements of the domain:

 textual data, instead of numerical data - healthcare data is mostly textual data,

gathering descriptive information, by contrast with business data, dominated by

numbers;

 the need for the integration of text, through a common vocabulary;

 the importance of the historical data.

In HCIS, the information is more complex than business-oriented information systems, the

transactions are fairly unique, and they contain rather textual data than numbers.

The greatest problem with textual data is the integration of terms and concepts. Usually,

healthcare information systems have to deal with data from different sources - hospitals,

outpatient clinics, doctor’s offices, emergency rooms, and so forth. In addition, the doctors

that feed the database represent different disciplines – pediatrics, cardiology, epidemiology,

orthopedics, gynecology, and so forth. Each of these disciplines has their own terminology.

Furthermore, the information going into the database is written by different levels of people –

physicians, nurses, technicians, accountants and so forth.

D5.1: Design Patterns for Interoperable IoT Systems

39

By ingesting all this diverse textual information, it is discovered that what is happening is a

recreation of the Tower of Babel. Everyone is speaking a different language and no one

really understands what anyone else is saying. That is why it is needed is a common

vocabulary.

Another important aspect is the “the time value of information”: in the healthcare environment

data has a long life. For instance, for the purpose of studying a disease, medical records that

are 50 years old may be extremely valuable, even where many of the people whose records

are represented are departed.

The HCIS should have two properties:

 Scalability by Design. The capability of an information system to extent its designed

structure and/or functionality, without changes in the database structure or in the

system’s application modules. This property of the information system is generally

very important, because of the requirement changes in time, determined by the

natural changes of the ‘business’ modeled by the system. The benefits of the systems

with this property consist in significant maintenance costs savings.

 Semantic Consistency of the Historical Data. The most challenging problem

related to database consistency preservation is the semantic consistency of the data.

When data were imported from legacy systems, which is often the case, or they were

added in the system by different people with different specialties or approaches, there

is a great chance for the same concept to bear different names in the system.

Similar with any other specialized information systems, healthcare information systems

should have a data-driven architecture. The only ‘business’ requirements that absolutely,

unconditionally must be satisfied by the information system are data requirements. However,

data constraints specific for healthcare environment require special treatment in healthcare

applications. The continuous evolution of the medical science determines continuous

changes of the information needs, which require design flexibility for the system’s data

model.

While business data occurs in repetitive numerical transactions with a simple pattern,

healthcare data means textual transactions, with lower frequency, but more complicated

patterns. Historical value of data is also greater in health care than in business.

In order to integrate healthcare data from different institutions, different medical disciplines,

or subsequent generations of information systems, is needed an integration solution, i.e.

common vocabulary or semantic translator. Moreover, it is of great importance that this

common vocabulary – which is in fact a dictionary with standard medical terms – is kept up to

date by a medical team, so that all the data inputs would find their right match in the system.

2.8.7 (e/m)Health - Database Design Pattern for Healthcare Information Systems

[47]

Healthcare Information Systems are in most cases complex systems that store and manage

large amounts of medical data. When such systems are intended to be used in medical

research, it presents the system designer with a double challenge: the need for complexity

and flexibility at the same time. In this paper authors present a database design pattern

along with a Graphical User Interface (GUI) design that empowers the researcher to build

metadata structures, which are supported by relational data structures on a database server.

As most of the data gathered during a medical research is viewed as having a hierarchical

structure, the presented approach is based on modeling trees and multi-trees. The

D5.1: Design Patterns for Interoperable IoT Systems

40

developed system is based on database design patterns and GUI prototypes. Issues

regarding data structuring, data entry and data retrieval are addressed.

The structure and functionality of the proposed system are presented, with emphasis on

three major functions: data structuring, data entry and data retrieval. Some considerations

regarding the implementation of the system are also provided.

By using the presented approach, medical researchers can quickly and efficiently configure a

customizable software system for recording their data in more complex structures than tables

or spreadsheets, while benefiting of the consistency of a relational database.

A database design pattern that models the medical data as a collection of trees, grouped in

what it is called “structure types”. In this case each type of observation chart used in the

study is represented by a “structure type”. The advantage of this approach is that each piece

of information can be accessed via its parent node but also via the structure type that it

belongs to. So, for instance, we can have a report with all the measurements of a variable

stored within a specific observation protocol, or observation sheet. Furthermore, the same

node can be included in one or more structure types, allowing the navigation from one tree to

another (multi trees).

Other approaches, like OpenEHR or EHR4CR, are focused on building a semantic electronic

health record technology that is primarily designed to improve the efficiency of conducting

clinical trials.

2.8.8 (e/m)Health - Quality Management in Healthcare Information Systems [48]

This paper illustrates how the implementation of total data quality management (TDQM)

methodologies could help to solve problems currently evident in HCIS. Information

management strategies employed by healthcare systems in Europe are discussed and

examined. It is our hypothesis that data quality-based management methodologies provide

an efficient vehicle for reform in HCIS.

Quality can be measured through the following measurements:

 Failure to Understand Consumers’ Needs: Effective support for patients, doctors,

nurses, etc.

 Poorly Defined Information Production Process: Use of interoperable EHR.

 No Product Life Cycle: lifecycle management of data and resources.

 Lack of an Information Product Manager (IPM): management of HCIS.

2.8.9 (e/m)Health - Standardized Device Services – A Design Pattern for Service

Oriented Integration of Medical Devices [49]

Service oriented device architecture (SODA) is a promising approach for enabling a

continuous IT support of medical processes in hospitals. However, there is a lack of specific

design patterns for realizing the concept in an effective and efficient way. This paper

addresses this research gap by introducing the Standardized Device Service design pattern,

as a first fundamental pattern for encapsulating devices as services. The pattern is based on

both established Service Oriented Architecture (SOA) best practices as well as latest

research in the field of SODA. This paper contributes to a) the extension of the IT support of

medical processes by devices, b) the general concept of SODA by addressing the lack of

generalized design concepts, and c) the existing catalog of SOA design patterns by

introducing a first pattern for device integration.

The specific elicited requirements for device services are:

D5.1: Design Patterns for Interoperable IoT Systems

41

 Mobility,

 Locality,

 (Human) Manual influences,

 Replacement,

 Device as resource,

 Hardware interfaces,

 Software changeability.

Figure 5: Standardized Device Service pattern

According to such requirements, device services must be able to:

 Dynamically handle different kinds of device interfaces, which usually cannot be

influenced.

 Manage the fact that devices can suddenly be not accessible at any time.

 Provide functionality for handling devices as physical resource (e.g., exclusive access

and locality) if required.

 When developing design patterns for device services, these requirements have to be

taken into consideration.

This paper proposes the new Standardized Device Service pattern (see Figure 5). It is a

compound pattern, i.e., it is comprised of combinations of design patterns. The name of the

pattern is due to the fact that realizes device services with standardized service contracts.

The following patterns are included:

 Service Encapsulation,

 Legacy Wrapper,

 Dynamical Adapter,

 Auto-Publishing.

2.9 Pattern Forms

Different approaches to design patterns specifications have been proposed that usually

include narrative text with a predefined structure (usually specific to each catalog). Patterns

and pattern languages have their roots in urban design and building in the work of

Christopher Alexander – the inspiration for the software patterns. Nowadays, pattern writers

tend to adjust the description form used to their needs and likes. Here, we analyze what

forms of patterns formalization have been used in the literature, in order to select one to be

used as pattern formalization technique in the INTER-IoT project.

D5.1: Design Patterns for Interoperable IoT Systems

42

First, lets present how design pattern can be defined which leads to the form of the pattern

description that are presented next.

According to Alexander a design pattern can be described as: Each pattern is a three-part

rule, which expresses a relation between a certain context, a problem, and a solution.

Further explanation:

“As an element in the world, each pattern is a relationship between a certain context, a

certain system of forces which occurs repeatedly in that context, and a certain spatial

configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how this spatial

configuration can be used, over and over again, to resolve the given system of forces,

wherever the context makes it relevant.”

The goal of the form is to introduce the reader to a problem, to describe the context in which

the problem might arise, to analyze the problem, and to present and a solution.

In [50] the author notices that even though different forms of pattern descriptions are used

some part of it is common. Specifically:

 Name: short and evocative.

 Indication that patterns are solutions to problems: problem needs to be described, but

most importantly recurring and useful solution needs to be presented.

 In what cases the pattern should be applied and how.

 Code examples as sample interpretation of the pattern.

 The pattern form is usually modified to best suit the needs of the domain being

abstracted, however, some of the forms have gained greater popularity and serve as

inspiration for new pattern writers.

 Following are the best known pattern forms that can be used or provide a basis for

developing a new form.

 Alexandrian (A Pattern Language; APL)[51]: very narrative original pattern form

without many headings. The major syntactic construct is Therefore preceding the

solution. Other elements are: a clear statement of the problem, a discussion of forces,

a solution and a rationale.

The following form was used in classic GoF book that introduced software patterns; it is

tuned for object-oriented software design, structured with many headings[52]:

 Name and Classification: The pattern's name conveys the essence of the pattern

succinctly. A good name is vital, because it will become part of your design

vocabulary.

 Intent: What does the design pattern do? What is its rationale and intent? What

particular design issue or problem does it address?

 Also Known As (optional): Other well-known names for the pattern.

 Motivation: A scenario that illustrates a design problem and how the class and object

structures in the pattern solve the problem.

 Applicability: What are the situations in which the design pattern can be applied?

 Structure

 Participants: The classes and/or objects participating in the design pattern and their

responsibilities.

 Collaborations: How the participants collaborate to carry out their responsibilities.

D5.1: Design Patterns for Interoperable IoT Systems

43

 Consequence: How does the pattern support its objectives? What are the trade-offs

and results of using the pattern?

 Implementation: What pitfalls, hints, or techniques should you be aware of when

implementing the pattern? Are there language-specific issues?

 Sample Code: Code fragments that illustrate how you might implement the pattern.

 Known Uses: Examples of the pattern found in real systems.

 Related Patterns: What design patterns are closely related to this one?

“Portland” [27], a short textual form identified at the pattern PLoP conference ideal for

summaries of large pattern languages; a one sentence summary statement that describes

the problem and another that describes the solution, with A See also frequently added at the

end. Each pattern in the Portland form makes a statement that goes something like: such

forces create this or that problem, therefore, build a thing to deal with them. It is used in

online Portland Pattern Repository maintained by Ward Cunningham.

“POSA”, form from [4] that is structured and quite long; patterns are preceded by a narrative

chapter that summarizes the pattern, then follows the headings:

 Name: meaningful and short summary.

 Example: demonstration of existence of the problem and justification for the pattern.

 Context: situation in which the pattern can be applied.

 Problem: related problem and associated forces.

 Solution: solution principles.

 Structure: structural aspects.

 Dynamics: run time behavior.

 Implementation: guidelines for implementation.

 Variations: possible variations of the pattern.

 Known Uses: example of uses of the pattern.

 Consequences: benefits and potential liabilities.

 See Also: reference to patterns that address similar problem.

“Coplien (Canonical)”, the form that explicitly spells out the most basic elements (maps

roughly to GoF) for describing a pattern i.e. sections with the following headings:

 Name: nouns or short verb phrase as in Alexandrian form.

 Alias (optional).

 Problem: the problem is often stated as a question or design challenge.

 Context: a history of patterns that have been applied before the current pattern; all

factors that, if changed, would invalidate the pattern.

 Forces: focus of a pattern; help the designer understand how to apply a pattern

effectively.

 Solution: how to solve a problem, may contain a sketch.

 Example (optional).

 Resulting Context: which forces does the pattern resolve and which remain

unresolved.

 Rationale (optional): why does this pattern work?

 Known Uses.

 Related Patterns.

“Enterprise Application Architecture (EAA)” [53], narrative form from [2] including sections:

how it works, when to use it, and one or more examples.

D5.1: Design Patterns for Interoperable IoT Systems

44

“Fowler” form includes:

 Title.

 Summary of the pattern.

 Discussion of the problem that may be addressed by implementing the pattern and

potential liabilities.

“Beck” form template includes:

 Title.

 Context.

 Problem: always phrased in the form of a question the reader might have to ask

themselves.

 Forces.

 Solution: the solution should include the name of the pattern in some form.

 Resulting Context.

Interesting fact is, the authors of “Enterprise Integration Patterns” use modified Beck form.

3 INTER-IoT patterns catalog

Figure 1 (Section:“INTER-IoT Design Patterns defining process – methodology”) shows all

phases of designing the INTER-IoT Design Patterns. This gives more details and presents

final solutions, i.e. INTER-IoT patterns catalog. The aim of this section is to present three

aspects. First (Section:“Designing process”), is describing the process of defining new

INTER-IoT patterns catalog. Second one (Section:“INTER-IoT Layer Patterns template”),

presents the form of INTER-IoT design patterns. Thirdly, section: “INTER-IoT issues and

solutions (final patterns catalog)” presents all the INTER-IoT Layer Patterns, including the

references to SotA, description the solving problem and example uses in the INTER-IoT pilot

implementation. Finally, section “Analysis of INTER-IoT Design Patterns” contains short

summary of achieved solutions.

3.1 Designing process

Section: “State of the art - research and analysis” presents the result of first phase “SotA

analysis”. The next step was on the creation of initial design patterns template, i.e. the

patterns useful in the INTER-IoT architecture development. Every involved partner proposed

patterns related to the specific INTER-LAYER (D2D, N2N, MW2MW, AS2AS, DS2DS,

CROSS), INTER-FW, INTER-Health and INTER-LogP. Third phase, assumed an analysis of

achieved results. It was easy to notice, that many defined patterns described very general

problems, not strictly concerning to the interoperability aspects of INTER-IoT. The guiding

rule for selecting the final set of patterns was the assumption that, a design patterns should

reflect the solutions provided in WP3. The preliminary set of patterns did not fulfil this

requirement, because they should present the solutions that support directly the integration

process. So the decision was made to define a set of INTER-IoT Design Patterns,

corresponding to the integration solutions, already achieved in the project. It was the main

selection criterion in the process of picking the final set of patterns and refinement them or

create a brand new definitions.

D5.1: Design Patterns for Interoperable IoT Systems

45

Table 10: Initial Design Patterns template - Analysis & Refinement (number of patterns
in every step)

INTER-IoT layers Initial Design Patterns template INTER-IoT Layer Patterns

D2D 6 2

N2N 8 1

MW2MW 10 4

AS2AS 7 3

DS2DS 2 2

CROSS 3 1

INTER-FW 0 2

INTER-Health 0 2

INTER-LogP 2 1

Table 10 shows the comparison of preliminary and final sets of design patterns in terms of

number of proposed patterns. It is easy to notice, that in the end, the final solution consists of

less number of entities. In initial state was 38 patterns and in the final stage was 18 patterns.

Moreover, it is worth to notice, that initial process was interrupted, because it was decided,

this process generates too many and too general solutions. It is the reason why INTER-FW

and INTER-Health does not contain any pattern, i.e. patterns was not yet added to the initial

catalog. If the process of generating the patterns had ended, the initial catalog would have

contained much more patterns.

Defining final catalog of INTER-IoT Later Patterns was complex process, that took long time.

It consisted of five subtasks, described in the following paragraphs.

Step 1. Preparing the specific template, in order to define INTER-IoT patterns in a clear way.

This step is described in details in section: “INTER-IoT Layer Patterns template”.

Step 2. Analysing project solutions. The new idea of preparing design patterns was to

describe solutions defined in WP3. Because of that, it has been applied reverse engineering,

i.e. patterns were extracted, using the WP3 solutions. To avoid the issue of initial catalog

(generating many, general patterns), the aim of analysis was to extract the problems specific

for INTER-IoT, that could not be fully solved by any existing solution.

Step 3. Analysing the initial catalog and extract patterns strictly related with the WP3. Not all

the patterns from initial catalogs were declined. Some of them, solved strictly INTER-IoT

issues, so they were moved to new, final catalog.

Step 4. Defining missing patterns. In this step were defined new patterns, taking into account

step (2) results, i.e. issues specific for INTER-IoT.

Step 5. Analysing and refinement the content of final catalog.

3.2 INTER-IoT Layer Patterns template

In section: “Pattern Forms”, was presented few, common approaches of describing the

design patterns. Taking into account presented formats, it can be noticed, that structures are

very similar and have the same parameters (fields) or with the same meaning, e.g. “Title” =

D5.1: Design Patterns for Interoperable IoT Systems

46

“Name”, “Applicability” = “Context”, “The body” = “Motivation”, etc. For INTER-IoT was

created a new template, based on the known solutions. Moreover, very helpful in process of

creating format (and in general, the whole pattern) was [49][50], which give a step by step

guidelines with examples on how to write a design pattern. Using all the information,

extracted from the analysis, it was selected set of fields that can describe the patterns in a

clear way. It consists of twelve properties, describing pattern. The names of those fields with

explanation are presented below.

 Pattern name. The formal, unique name of the pattern. The name is very important

part of pattern description. The author should try to put it in short sentence, describing

the patterns action.

 Identifier. An individual ID within the INTER-IoT project.

 Inspired by. The name of the pattern(s) on which it is modeled. Most patterns are not

a completely new solution, but based on the existing one. Some common patterns do

not fully solve the problem, because of the specific of the INTER-IoT issue. In that

case, a new pattern was created, extending the already existing one.

 Related patterns. Other patterns, related with the describing pattern. This field takes

into account both INTER-IoT Layer Patterns and common solutions.

 Intent (summary). A short description of the goal behind the pattern and the reason

for using it. It is an extension of the “Pattern name”, explaining its action/purpose.

 Problem & Solution. A scenario that illustrates a problem (in the platform integration

process) and how the pattern solves this problem (its setting). This is important to

understand the nature of the pattern (why it was used in the INTER-IoT process).

This should be taken by WP3 specific layer.

 Applicability. Situations in which this pattern is usable; the context for the pattern.

 UML representation. Structure of the pattern modeled in UML diagram (also

deployment and component diagram if needed).

 Implementation. An extension of the “UML representation” property, i.e. the textual

description of realization and architecture (not a source code, like in GoF). The aim of

this property is to clarify the diagram.

 Known uses (within the INTER-IoT). Usages of the pattern in the platform integration

process. It should described the module(s) (and scenario related with it) running

within the INTER-IoT .

 Identified by. INTER-IoT partner who defined and submitted the pattern.

 Registration date. Date of contribution (required date format: dd-MM-yyyy).

3.3 INTER-IoT issues and solutions (final patterns catalog)

In section: “INTER-IoT Design Patterns defining process – methodology”and “INTER-IoT

patterns catalog” was mentioned that INTER-IoT Layer Patterns defines solutions specific for

INTER-IoT issues, i.e. related with integration process (described in WP3). This section

presents all the created patterns catalogs, containing solutions for INTER-LAYER, INTER-

FW,INTER-Health and INTER-LogP. Every pattern’s template describes not only the solution

but also the problem, i.e. a reason of creation pattern (property “Problem & Solution”) and

example of usage the pattern in the integration process (property “Known uses”). Moreover,

in the property “Inspired by” is the source of inspiration for the pattern (most of the patterns

extends some existing solution(s)).

3.3.1 D2D Layer

Design Pattern

D5.1: Design Patterns for Interoperable IoT Systems

47

Pattern name: INTER-IoT Gateway Event Subscription (Publish/Subscribe) Identifier: 03

Inspired by:

 “Publish/Subscribe” IoT Patterns: Design Patterns for Interaction (Section: “IoT Patterns”)

 “Publish-Subscribe Channel” Enterprise Integration Patterns: Messaging Channels (Section:

“Enterprise Integration Patterns”)

 “Facilitator” Agent Design Patterns: by Kendall (Section:“Agent Design Patterns”)

 “Proxy” Agent Design Patterns: by Kendall (Section:“Agent Design Patterns”)

Related patterns:

 D2D REST Request/Response

Intent:

INTER-IoT proposes as a potential solution, a D2D gateway that allows any type of data forwarding. It

will make the device layer flexible by decoupling the gateway on two independent parts: a physical

part that only handles network access and communication protocols, and a virtual part that handles all

other gateway operations and services.

Problem & Solution:

In order to provide interoperability between two heterogeneous IoT devices, the solution should be

applied that establishes bidirectional, asynchronous communication with the ability to publish, filter

and consume the necessary data.

This pattern describes the approach that uses the INTER-IoT gateway as a subscription mechanism.

The INTER-IoT gateway is an intermediary element between the IoT artifacts and the IoT platforms,

or, in the case of D2D communication, between two devices. It allows the transmission of data

generated by sensors to its destination. This pattern allows asynchronous messaging among the

gateway and other elements of the IoT system that interact with it (i.e. smart objects connected to the

gateway and/or INTER-IoT middleware). If required, the gateway should perform operations of

protocol conversion to enable the communication. Senders of messages (publishers) do not program

the messages that are sent directly to specific receivers (subscribers). Instead, they publish

messages, using defined classes, without knowledge of subscribers. Similarly, subscribers express

interest in one or more classes and only receive messages that are of their interest, without

necessarily knowing the publishers. Significant element of this solution is the structure of the

message which contains all the necessary information about subscription (e.g. message endpoint,

See design pattern 2: “D2D REST Request/ Response”).

Applicability:

This pattern is used when an event-based communication model is needed, when asynchronous data

needs to be pushed from/pulled to the INTER-IoT Gateway.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

48

Figure 6: INTER-IoT GW Event Subscription (Publish/Subscribe) - D2D
Communication

Implementation:

In this case, the Gateway is the subscriber of a publisher (Device X) and in the subscription request

message an endpoint is defined (Device Y). Also the INTER-IoT gateway is subscribed to

publications of Device X, and in the subscription request message the other endpoint is defined

(Device X). Protocol conversion is performed if required to establish this communication. When the

publisher has new events (asynchronous) it will push the event data (publication) to the defined

endpoint. This example illustrates a D2D communication through the INTER-IoT gateway, that acts as

an intermediary element enabling this interaction.

Known uses (within the INTER-IoT):

Identified by:

UPV

Registration Date:

05-05-2017

Design Pattern

Pattern name: D2D REST Request/Response Identifier: 02

Inspired by:

 “Request-Response” Reactive Patterns: Message Flow (Section: “Reactive Patterns”)

 “Request-Reply” Enterprise Integration Patterns: Messaging Patterns (Section:“Enterprise

Integration Patterns”)

 “Request/Response” IoT Patterns: Design Patterns for Interaction (Section: “IoT Patterns”)

Related patterns:

 INTER-IoT Gateway Event Subscription (Publish/Subscribe)

Intent:

A request/response solution for gateway communication within the D2D layer.

Problem & Solution:

In an IoT scenario, the INTER-IoT Gateway needs to communicate with IoT smart objects/artifacts.

INTER-IoT gateway should be accessible to authorised external elements to enable the reception of

D5.1: Design Patterns for Interoperable IoT Systems

49

information collected by smart objects and the execution of control and configuration orders.

For example, a main INTER-IoT goal is to allow heterogeneous IoT platforms to retrieve information

from the smart objects through INTER-IoT layers and framework. For this aim, the platform’s MW

should be able to communicate with the INTER-IoT GW to enable these information flows. Thus, it is

desirable to connect IoT artifacts (if possible) through a HTTP/REST API using the

Request/Response pattern. This communication pattern allows a message exchange in which a

requestor (e.g. MW or GW) sends a request message to a replier system which receives and

processes the request (e.g. MW or GW), ultimately returning a message in response.

Applicability:

This pattern is used when the communication between the middleware of an IoT platform and the

INTER-IoT gateway (both directions, although MW->GW will be typically publish/subscribe) is

performed through a REST API. Also, for management purposes the gateway will expose a REST

endpoint where configuration and management actions can be performed using the

Request/Response patterns.

UML representation:

Figure 7: D2D REST Request/Response

Implementation:

There are two possible implementations of this pattern: (1) when the gateway is the requester (client)

or (2) the one who receives requests (server). In the first case, the gateway is the requester and

through an HTTPv2 client performs the request and gets the response. In the second case, the

gateway deploys an HTTPv2 server that exposes REST endpoints and after performing the

operations will create a response with the outcome.

Known uses (within the INTER-IoT):

 Register/Unregister device to a platform MW.

 Sensor data update to a platform MW.

 Configuration actions in GW.

Identified by:

UPV

Registration Date:

05-05-2017

D5.1: Design Patterns for Interoperable IoT Systems

50

3.3.2 N2N Layer

Design Pattern

Pattern name: INTER-IoT Pattern for Orchestration of SDN NetworkElements Identifier:01

Inspired by:

 “Software-defined networking (SDN) orchestration”[54]

 “Network virtualization (NV)”[55]

Related patterns:

Intent:

Monitoring and configuration of SDN elements (virtual-switches) with an orchestrator component

(Controller) exchanging flow and control messages. The main goal of the Orchestration of SDN

Network Element pattern is to provide interoperability between different domains connected to a

network or between different networks topologies and/or configurations.

Problem & Solution:

The domain-orientation of IoT deployments makes all of them to be isolated from each other. One of

the solutions for the interconnection among them is, instead of making it at the device/gateway level,

it is to solve it in upper layers. In particular, at network layer the interoperability and exchange of

information can be done in a seamless way.

For that purpose, this INTER-IoT orchestration oriented pattern is defined to manage the elements of

the network that provides connection from the different domains to the network itself. This pattern is

used in the development of a virtual software defined network (SDN) where all elements are virtual

resources or instances that are controlled within a central point or orchestrator. Network-to-Network

(N2N) interconnection can then be performed through Software Defined Networking. The different

networks, which can be on different locations, can be virtually interconnected and belong to the same

Virtual LAN (VLAN). Thus, this physical separation of networks is invisible for the user and elements

connected to the VLAN, which can only perceive one network. This allows network interoperability;

elements can interoperate across both physical IoT networks.

 The virtualization of: (1) networks functions (NFV); (2) applications at the top of the controller;

(3) nodes: perform interconnection in the network is used in this pattern to reduce the cost of

the deployment and improve the efficiency of the system.

 Flow control pattern: is used for the self-awareness of the state of the network, that allows to

react to specific situations.

 Message flow pattern: is a sequence of processing steps that run in the node when an input

message is received. This sub-pattern is implemented in each node (virtual switch) and in the

controller to process the message with a pre-defined rules.

Applicability:

This pattern is applied when a INTER-IoT Software Defined Network is deployed, to enable its

functionality. This type of networks allows a total software control of the network functions, and a

completely seamless and transparent Network-to-Network interoperability.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

51

Figure 8: INTER-IoT Pattern for Orchestration of SDN Network Elements

Implementation:

Once the sensor defined network is created with a specific topology, the Controller manages one or

several switches in the network in a dynamic way, and it is in charge of the switches’ configuration.

This network can be a set of several physical networks, interconnected in a virtual way, and thus

acting as single network from a SDN perspective. The different parameters that are applied on the

network can be changed within the controller of the network. Network traffic through the switches is

redirected depending on the switches’ rules or instead, on the controller application. The

interconnection of the networks is represented with a virtual switch. This switch is from the SDN

controller perspective no different from the virtualized switches of the networks, and receives the

same type of control orders for forwarding packets or requires the same type of forwarding decisions.

After the setup of the SDN network, packets can be sent through it. Switches are responsible of

routing the packets. For the virtual network, switches from different physical network are not

distinguished, as well as the virtual switch that interconnects the networks. When a packet is received

in a switch, this routing element checks the specific rules programmed for its forwarding. In case a

rule applies to this packet, it is forwarded to its next hop in the network. In case there is no valid rule,

unlike a traditional network, an upper element takes a decision regarding the packet: the SDN

Controller. The Controller is aware of this undefined situation, it receives the packet and takes a

decision regarding the action that must be performed with it. The Controller orders the switch to take

D5.1: Design Patterns for Interoperable IoT Systems

52

that action. Moreover, the Controller registers information regarding the network situation to be taken

into account in future decisions, and to create an accessible record through the SDN dashboard.

Each next hop within the SDN network that does not reach yet the final end-point has a similar

process for deciding the forwarding of the packet. This happens in the same way even if the hop is in

another network physically independent and distant, but virtually interconnected. N2N interoperability

is thus achieved.

Known uses (within the INTER-IoT):

 Any use that involves the utilization of the INTER-IoT Software Defined Network (SDN)

component.

 An example scenario is “Configuration of virtual switches within a SDN”, which is a necessary

configuration step for enabling the use of an INTER-IoT Software Defined Network.

Identified by:

UPV

Registration Date:

13-06-2017

3.3.3 MW2MW Layer

Design Pattern

Pattern name: INTER-MW Simple Component Pattern Identifier: 04

Inspired by:

 “Simple component” Reactive Patterns: Fault Tolerance and Recovery (Section:“Reactive

Patterns”)

Related patterns:

Intent:

The intent of this pattern is to partition INTER-MW into multiple components, which operate as close

as possible to the idea of doing only one thing, and doing it in full. This pattern is derived from the

single responsibility principle, which states that a class should have only one reason to change.

Problem & Solution:

During the building of complex systems with multiple functions, appears the necessity to have these

functions be performed by multiple different components. Responsibilities between these are to be

divided recursively, until we reach a desired granularity of the component hierarchy. This would

enable us to test, debug and extend the complex system more efficiently, simplifying all operations

upon the system.

Applicability:

This is one of the most basic patterns that can be universally applied. It does not impose how much

granularity in division of responsibilities should be achieved, but it does indicate that the analysis

should be performed in order to end up with the best component decomposition for a given

application. The pattern should be applied recursively, but one should remember not to divide

components too far, not to end up with trivial ones.

In INTER-IoT, the main idea is to divide the responsibility of routing and translating messages

between platforms and applications. These responsibilities are divided among components, joined

into multiple distinct component groups. Each of these component groups contains several

components.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

53

Figure 9: INTER-MW Simple Component Pattern

Implementation:

Within INTER-MW, there are three distinct component groups: (1) communications and control, (2)

MW2MW services, and (3) bridges. All of them are further divided. Responsibilities of whole INTER-

MW are clearly partitioned among the three component groups: (i) making communications and

control component group in charge of preparing actions for execution and forwarding the results to

the application, (ii) designating the bridges group to take care of communication with specific

platforms, and (iii) leaving support of both two to the MW2MW services component group.

Within the communications and control group, are the Platform Request Manager and the API

Request Manager. Within the MW2MW services group are the Resource Registry, Resource

Discovery and Platform Registry and Capabilities components. Within the Bridges group there are

various bridge components, that focus on enabling communication between the INTER-MW and

various platforms.

Known uses (within the INTER-IoT):

 Three distinct component groups within INTER-MW: (1) communications and control, (2)

MW2MW services and (3) bridges. Each component in each of one of these groups has only

one purpose, e.g. API Request Manager takes care of application’s API requests, while the

bridges establish communication between INTER-MW and specific platforms.

Identified by:

XLAB

Registration Date:

13-06-2017

Design Pattern

Pattern name: INTER-MW Message Broker Identifier: 05

Inspired by:

 “Message Broker” Enterprise Integration Patterns: Message Routing (Section: “Enterprise

Integration Patterns”)

 “Broker” IoT Patterns: Design Patterns for Interaction (Section: “IoT Patterns”)

Related patterns:

 INTER-MW Self-contained Message

Intent:

A component that facilitates passing of messages between decoupled INTER-MW components.

Problem & Solution:

Building middleware, composed of several independent components, one tries to avoid making point-

D5.1: Design Patterns for Interoperable IoT Systems

54

to-point connections between these, especially because many such connections correspond to many

interfaces that expose the operations of each individual component. In general, components also tend

to be proprietary, and even if that is not true in INTER-IoT architecture, having point-to-point

interfaces makes not only dynamic reconfiguration, matching of different security constraints and QoS

(quality of service) requirements between components difficult, but also general system’s operation

downright cumbersome.

The employment of a message broker, can help to overcome limitations of point-to-point connections

and enforce a common messaging interface upon different middleware components. Thus allowing

each component to initiate interactions with any other component (for example, a component that

manages platform requests initiates interaction with the semantic mediator), no matter what their

internal differences are and how big the difference in their purpose is. Each component

communicates directly only with the broker, while internally in the broker, each component is

represented with a logical name, abstracting the component and making its internal operation hidden

from other components. Important part of this approach is the proper format of message, which

consists of the payload and the label, which contains all the necessary information for the broker.

Applicability:

Central Message Broker receives messages from multiple destinations (called also message

producers), determines the correct destinations (called also message consumers), and routes

messages to correct channels that take them towards their destinations. It allows us to decouple the

destination of a message from the sender and maintain central control over the flow of messages.

This is achieved through usage of topics, to which consuming components can subscribe and

proceed to consume messages, sent to those topics by the publishing components.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

55

Figure: 10 INTER-MW Message Broker

Implementation:

The UML diagram depicts the message flow through the broker. Each message, which the publisher

sends to the broker, is composed of a label and payload. Message payload contains the content of

the message, while the label is used for message routing within the broker. When the message

arrives into the broker, it is sorted in Exchange into applicable queue(s), based on its label.

INTER-MW label contains the topic that this message has to be routed to (for example, the topic that

distinguishes messages that come from IoT artifact to the other one), and each topic has a queue

associated with it. Message is then passed on to the consumer through the queues, associated with

this topic.

Known uses (within the INTER-IoT):

 Message passing between components of INTER-MW (an example scenario: ”Request query

to MW2MW”). Each INTER-MW component (API Request Manager, Platform Request

Manager, etc.) has at least one topic in the broker, through which other INTER-MW

components can send messages to it. Topics represent information about which components

are required, in order to act upon them and/or forward them. Thus, when a component

receives a message on a particular topic, it knows also from which neighbouring INTER-MW

component this message came, therefore it also knows the direction of the message –

whether it is going downstream towards the bridges, or upstream towards the application.

 Within INTER-MW, this pattern first started life as a data flow manager, but evolved through

removal of the concept of data flows into a full-fledged message-passing mechanism. The

concept of the message broker naturally fits into the INTER-MW architecture, because its

components both send and receive messages from one another, and they are all decoupled.

Identified by:

XLAB

Registration Date:

13-06-2017

Design Pattern

Pattern name: INTER-MW Self-contained Message Identifier: 06

Inspired by:

 “Self-contained message” Reactive Patterns: Message flow (Section:“Reactive Patterns”)

 “Messaging Metadata” SOA Patterns (Section:“SOA Patterns”)

Related patterns:

Intent:

Each message contains all the information that is needed for execution of a particular action.

Problem & Solution:

Within middleware, the messages should be pure and complete representations of certain events or

commands, regardless of whether we interpret them now or in the future. In doing so, there is no

necessity to rely on additional data stores that need to be in time-sync with the event during message

processing.

Each INTER-MW component must be able to extract from the message (at all times) all the

information, needed for message’s routing and interpretation, with minimal data stored within INTER-

MW components themselves. Each message contains all data needed for its processing and

understanding its purpose. Each INTER-MW message has a distinct set of message types associated

with it. In each INTER-MW component, message is processed and routed based solely on this set of

D5.1: Design Patterns for Interoperable IoT Systems

56

message types. For example, in the case of this set containing a particular message type that

subscribes the application to platform’s status updates, INTER-MW components that will handle the

message will know, that the message has to be sent downstream, and when the message reaches

the bridge for the relevant platform, this bridge will finally act upon this message type. For each

message that goes downstream, there can also be a response that goes upstream. Such messages

might, for example, have an additional response message type associated with them. Matching

messages that go downstream with response messages that go upstream can be done through

remembering and distinguishing different chains or conversations of messages.

Applicability:

This pattern is usable in the case of middleware components to be as context-free as possible,

storing only a minimal amount of data needed for message processing and routing.

This pattern can be also employ in the case of no need to reference past messages, except for

message responses, and even then, these are only semantically linked to original messages; one

could even exist without original messages.

UML representation:

Figure 11: INTER-MW Self-contained Message

Implementation:

The activity diagram illustrates the message flow through an INTER-MW component. Message is

processed based on its payload and routed based on its label (or metadata). The resulting message,

often a mere copy of the original, is then routed towards the next INTER-MW component.

Known uses (within the INTER-IoT):

 “Query”. Each message contains a message ID, as well as a Conversation ID. They together

with message’s type uniquely distinguish both the message itself and it purpose, such as

SUBSCRIPTION, reply to SUBSCRIPTION, and so forth.

 Messages, that have the same Conversation ID, belong to the same conversation. Within a

conversation are typically find messages that go down stream, followed by replies to those

messages, that group stream. Furthermore, response messages have an additional

RESPONSE type.

Identified by:

XLAB

Registration Date:

13-06-2017

Design Pattern

Pattern name: INTER-MW Message Translator Identifier: 07

Inspired by:

 “Message Translator” Enterprise Integration Patterns: Message Transformation

(Section:“Enterprise Integration Patterns”)

 “Data Format Transformation” SOA Patterns (Section: “SOA Patterns”)

D5.1: Design Patterns for Interoperable IoT Systems

57

Related patterns:

Intent:

Translation of messages to and from INTER-MW internal message format and platform’s proprietary

data models and data formats.

Problem & Solution:

The purpose of middleware is to pass information between applications and different IoT platforms

such as FIWARE[56] and universAAL[57]. However, as platforms expect to deal with messages in the

format, that models their internal workings, they tend to use proprietary data models. This poses a

major problem, since each platform formats the data in a different way. Both messages that go

upstream from the platforms towards the application and messages that go downstream towards the

platforms need to be syntactically and semantically translated, taking into account proprietary data

models and data formats, used by different platforms.

A message translator enables such translation between proprietary data models and data formats,

used by platforms, and the internal data model and data format, used by INTER-MW components.

Applicability:

INTER-MW’s message translator pattern is realized through multiple INTER-MW components and

enables interoperability between different platforms without needing to introduce translations between

every possible pair of platforms; that is, translation into and out of the common INTER-IoT data

model.

Semantic translation from and into the internal message format is done by a dedicated IoT semantic

translation component, while the syntactic translation is done in individual platform’s bridges, as only

these know the internal platform’s data format and the syntax it uses.

UML representation:

Figure 12: INTER-MW Message translator

Implementation:

The sequence diagram illustrates the flow of messages between the two INTER-IoT artifacts (e.g.

D5.1: Design Patterns for Interoperable IoT Systems

58

platform). Syntactic translation to/from proprietary message format is done in the bridge, while the

semantic translation of the message is done in the Inter Platform Semantic Mediator.

Known uses (within the INTER-IoT):

 INTER-MW use case: “MW2MW sends information to device(s)”.

Identified by:

XLAB

Registration Date:

13-06-2017

3.3.4 AS2AS Layer

Design Pattern

Pattern name: AS2AS Flow Based Service Composition Identifier: 11

Inspired by:

 “Flow-based programming”[58]

Related patterns:

 AS2AS Service Orchestration

 AS2AS Discovery of IoT Services

Intent:

To generate a service execution flow that allows an interoperation and composition of services from

different IoT platforms.

Problem & Solution:

AS2AS aims to provide a solution to allow interoperability of services and applications from different

IoT platforms. For this aim, AS2AS will furnish a solution to allow the catalog, discovery and use of

different services from diverse heterogeneous IoT platforms. In this solution it is necessary to provide

an execution flow that allows a specific sequence of execution of several services, the

aforementioned IoT services.

Flow-based programming (FBP) is a programming paradigm that defines applications and services as

networks of “black box” processes, which exchange data across predefined connections by message

delivery, where the connections are specified externally to the processes. These black box processes

can be reconnected to form different applications without having to be changed internally. FBP is thus

naturally component-oriented, considering those black box as components.

The AS2AS flow-based execution pattern allows the creation of sequential execution flows using

those services, thus allowing for service composition among different IoT services. Those black boxes

that represent IoT services can be linked by wiring the output of a service with the input of a different

one. Each defined input can only be feed by one wire, generally from an output. This creates a flow;

output messages from a service are routed to a service input. Several services can be concatenated

in this way, by linking an output of a first service to the input a second service, and its output to the

input of a third one and so on successively. Thus, by wiring the IoT services (or a service for

performing data processing), can created an execution flow of IoT services.

Applicability:

This pattern can be applied for any black boxes that represent IoT services, that can be

interconnected through a FBP link, generating a flow.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

59

Figure 13: AS2AS Flow Based Pattern

Implementation:

The UML - component diagram depicts the IoT service as a black box. Every IoT service contains

input and output to wire it with other services. This approach enables IoT services to be linked by

wiring the output of a service with the input of a different one. Each defined input can only be feed by

one wire, generally from an output. This creates a flow; output messages from a service are routed to

a service input.

Known uses (within the INTER-IoT):

 AS2AS browser-based flow editor for joining together services from different IoT platforms

available in INTER-IoT, in order to create flows (an example scenario: to design a flow

composed by several services).

Identified by:

UPV

Registration Date:

12-06-2017

Design Pattern

Pattern name: AS2AS Service Orchestration Identifier: 09

Inspired by:

 “Service Orchestration” Service Orchestration (Section: “Service Orchestration”)

Related patterns:

Intent:

To adapt the orchestration of services to an INTER-IoT solution that is in charge of the interactions

among different IoT services to produce a specific process.

Problem & Solution:

Cooperating diverse heterogeneous IoT platforms uses huge number of different services. It causes

the need to find the way of making different, individual services work together in a reasonable way.

The important is not only a message flow from point(s) to point(s) but also triggering the necessary

actions (during the flow process). The main and common problem is that instead of reusing the

existing processes/actions, they are duplicated.

This pattern allows the union and orchestration of IoT services from heterogeneous platforms. The

union of several services creates a specific process. The main idea of this pattern is to define a set of

INTER-IoT nodes, i.e. services and its interfaces, runs within the integrated platforms and wire. The

internal, central core element wire the nodes, necessary to handle the specific task and controls all

the processes. Due to this, it allows a higher range of options for this execution.

Applicability:

This pattern focuses on process fragment reuse and is designed for goal based processes.

Orchestration enables the composition of IoT service workflows based on services from the

underlying IoT platforms.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

60

Figure 14: AS2AS Orchestration Pattern

Implementation:

The UML diagram depicts the orchestrator way of action, i.e. designing the task, requiring the work of

many services. It allows to wire together flows, using defined nodes (INTER-IoT services). Moreover,

it is possible to manage the flow in an easy way. The orchestrator deploys the designed flow to the

runtime.

Known uses (within the INTER-IoT):

 AS2AS orchestrator module. A Node-RED tool is used to create the visual model of the

sequence that compose this workflow and to create the code that will perform the sequence

of actions.

Identified by:

UPV

Registration Date:

12-06-2017

Design Pattern

Pattern name: AS2AS Discovery of IoT Services Identifier: 10

Inspired by:

 “Discovery” IoT Patterns: Design Patterns for Interaction (Section:“IoT Patterns”)

 “Enterprise inventory”: SOA Patterns (Section:“SOA Patterns”)

Related patterns:

Intent:

This design pattern allows to register and claim the specific services, used by the platforms (within the

INTER-IoT environment).

Problem & Solution:

There are a variety of available IoT services from different IoT platforms that provide a wide range of

functionalities. It is necessary to be able to discover these services, to be aware of them and to be

capable to use them appropriately in an efficient way.

This design pattern enables the registration of services in the IoT environment, in order to

consultation of available services from IoT platforms, as well as its potential use through the INTER-

IoT AS2AS solution. To perform the Discovery of IoT services, it is necessary to have them previously

registered in a catalog of available services, prior the Discovery action. Thus, only services previously

registered in INTER-IoT, indicating their associated features, can be discovered.

Applicability:

This pattern is applicable for providing the services interoperability by registration process and

claiming process. It is used for all services run within the INTER-IoT environment and used by other

INTER-IoT artifacts.

D5.1: Design Patterns for Interoperable IoT Systems

61

UML representation:

Figure 15: Discovery of IoT Services

Implementation:

The UML diagram depicts two aspects, relevant for this pattern. First is a service registration process,

in order to provide the service as a public. Second main functionality is discovery action, i.e. claiming

the necessary service(s) by INTER-IoT artifact.

Known uses (within the INTER-IoT):

 AS2AS discovery module.

Identified by:

UPV

Registration Date:

12-06-2017

3.3.5 DS2DS Layer

Design Pattern

Pattern name: Alignment-based Translation Pattern Identifier: 13

Inspired by:

 “Message Translator” Enterprise Integration Patterns: Message Transformation

(Section:“Enterprise Integration Patterns”)

 “Data Model Transformation” SOA Patterns (Section: “SOA Patterns”)

 “Metadata centralization” SOA Patterns (Section: “SOA Patterns”)

 “Market Maker” Agent Design Patterns (Section:“Agent Design Patterns”)

Related patterns:

Intent:

Semantic translation of RDF messages exchanged between two IoT artifacts, based on an

alignments (set of correspondences) defined between artifacts’ ontologies.

Problem & Solution:

Building the IoT ecosystem involves combining already existing solutions, which (likely) belong to

different owners and have been developed using different technologies (e.g. a Web Services-based

application is combined with a graph database-based application which communicates using JSON

messages and with an application that communicates using XML messages). Consequently, they

differ both on syntactic and semantic level. Cooperation and communication between platforms

should be made possible regardless of their underlying technology and the scalability of the IoT

D5.1: Design Patterns for Interoperable IoT Systems

62

environment. Without loss of generality, the message format can be assume to be RDF since other

formats can be transformed to RDF. The semantics of messages is platform specific (ontology can be

natively supported, or semantics expressed in e.g. XSD can be lifted to OWL ontology). Specifically,

for semantic interoperability an expressive method for defining correspondences between entities

should be offered. Such correspondences should support mapping between specific URIs, parts of

the RDF structure, transformations etc. The component implementing the translation should provide

interfaces to submit messages to be translated and publish translated messages.

Applicability:

This pattern is applicable for providing semantic translation between RDF messages exchanged

between heterogeneous IoT artifacts. The translation, based on one-to-one translation (alignment),

should be possible to define for any two artifacts. The advantage of this approach is a good quality of

translations between ontologies, since the alignments are generated directly between ontologies of

two parties, without any “intermediate ontology”. Moreover, it is easy to understand and debug the

translation process.

UML representation:

Figure 16: Alignment-based Translation Pattern

Implementation:

The UML diagram depicts a process of alignment-based translation between two IoT artifacts.

Translator is an external component that applies alignment i.e. performs translation. It consumes

incoming messages, applies an alignment (correspondence after correspondence), and publishes

translated message.

Known uses (within the INTER-IoT):

IPSM component of INTER-IoT uses this pattern to execute translation between source IoT artifact

and INTER-MW (source ontology is translated to central ontology), and INTER-MW and target IoT

artifact (central ontology is translated to target ontology). The alignment based translation pattern is

used in both step of semantic translation between source and target platforms. Rules for each

translation step are defined in an alignment persisted in IPSM Alignment Format based on Alignment

API Format level 2. The IPSM Alignment Format allows to formally specify correspondences between

parts of RDF graphs with additional features such as calling functions.

IPSM uses the communication infrastructure based on channels (Apache Kafka) that provide

interfaces (topics) to consume and publish messages. IPSM consumes the messages to be

D5.1: Design Patterns for Interoperable IoT Systems

63

translated from a predefined topics and publishes translated messages to other predefined topics.

Identified by:

SRIPAS

Registration Date:

20-09-2017

Design Pattern

Pattern name: Translation with central ontology Identifier: 12

Inspired by:

 “Message Translator” Enterprise Integration Patterns: Message Transformation

(Section:“Enterprise Integration Patterns”)

 “Data Model Transformation” SOA Patterns (Section: “SOA Patterns”)

 “Metadata centralization” SOA Patterns (Section: “SOA Patterns”)

 “Market Maker” Agent Design Patterns (Section: “Agent Design Patterns”)

Related patterns:

Intent:

Semantic translation of RDF messages exchanged between IoT artifacts, where one constitutes the

central point for achieving interoperability.

Problem & Solution:

To provide common understanding in the semantic translation process a modularized central ontology

can be created from “merged” IoT and domain ontologies. Here, a domain ontology is a conceptual

model for specific domain, e.g. transportation, health, etc. IoT ontology describes different aspects

related with the IoT domain e.g. platforms, devices, sensors, services, etc. The central ontology is to

be specified when the initial ecosystem is put in place. First advantage of this approach is that it does

not suffer from the scalability problems. After a number of artifacts is combined into a working

ecosystem, it should be possible to add additional ones without decreasing performance. Moreover,

joining should not involve extra effort, larger than combining the original group of artifacts. Integration

of new artifacts involves creation of a single pair of translation rules (alignments; see pattern 13) with

the central ontology (in case of unidirectional interoperability only one alignment is enough). Second,

such approach requires less preparation/work from the semantic engineer responsible for bringing the

new IoT platform to the ecosystem. This is because only a single “point of joining” has to be

instantiated. Furthermore, the long-term maintenance is simplified as changes in a single platform

require localized adjustments only. The component implementing the translation should provide

interfaces to submit messages to be translated and publish translated messages.

Applicability:

This pattern is applicable for providing semantic translation between multiple heterogeneous IoT

artifacts that want to exchange RDF messages. Note that, this pattern can be extended also to

semantic translation outside of IoT domain. The translation should be provided for more than two

artifacts at the same time minimizing the size of required storage for alignments.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

64

Figure 17: Translation with central ontology

Implementation:

The UML diagram depicts a process of a semantic translation with central ontology between two IoT

artifacts. Translator is an external component that performs translation (applies alignment). It

consumes incoming messages, applies an alignment (correspondence after correspondence) from

source to central and from central to target semantics, and publishes translated message.

Known uses (within the INTER-IoT):

IPSM component of INTER-IoT uses this pattern to execute translation between source IoT artifact

and target IoT artifact. The translation process is divided into two steps: input message is translated

from source semantics to the central ontology, message in the central ontology is translated to target

semantics. The modularized central ontology is deployment specific but the core is based on GOIoTP

(Generic IoT Platform Ontology) and additional modules are domain specific e.g. transportation,

health.

Identified by:

SRIPAS

Registration Date:

20-09-2017

3.3.6 CROSS Layer

Design Pattern

Pattern name: INTER-IoT SSL CROSS-Layer secure access Identifier: 17

Inspired by:

 Security Patterns (Section:“Security Patterns”)

 IoT Patterns: Design Patterns for IoT Security (Section:“IoT Patterns”)

Related patterns:

 Login Authentication

 Sensitive Data Encapsulation

D5.1: Design Patterns for Interoperable IoT Systems

65

 Encryption and Single Point of Access

Intent:

Ensuring the security of the interactions with external interfaces (i.e. APIs) of every layer that

composes INTER-IoT.

Problem & Solution:

As INTER-IoT architecture is composed by diverse layers, the access to each of these layers, as well

as the interactions among them, must be secure. A gap of security in a layer of INTER-IoT

jeopardizes the security and integrity of the whole layered framework and connected platforms. To

ensure a sufficient level of security on each of the INTER-LAYER and INTER-FW components,

different security mechanisms can be implemented: authentication of credentials, use of

authentication tokens and Secure Sockets Layer (SSL).

The transmission of unencrypted data makes the information vulnerable. Even when login

authorization is set, when the user enters a password if the data transmission is unprotected, a

network sniffer program from another user in the network, or a man-in-the-middle, are able to receive

this information and read it. Any public Wi-Fi network can be easily eavesdropped by an unwanted

actor. In that case, if passwords are sent in plain text, not only the information can be seen by non-

authorized users, also false information can be sent as authentic in both sides of the communication

with the INTER-IoT APIs. In the case of sensitive data, such as medical, this can lead to serious

hazards in the people’s privacy and personal scope, and lead to ethical issues. Integrity of data

suffers a high risk in non-protected communications. It has crucial importance to guarantee the

authenticity, privacy and confidentiality of data.

In INTER-IoT, layer access will be secured with Secure Sockets Layer (SSL) that employs the pattern

of INTER-IoT SSL. Every INTER-IoT layer exposes a REST API that represents an external interface

accessible to external actors, such as other INTER-IoT layers, users, or IoT platforms.

To enable the use of this APIs to only allowed actors the access is secured through SSL. REST APIs

are accessible through a browser, which should provide a trusted certificate. Only after the

establishment of a secure connection it will be accessible the authentication through login, to open

the access to the layer API. Further operations on the layer API will be done under this secure

connection.

Applicability:

This pattern is applied in the interactions of any actor with the INTER-IoT layers APIs. The access

can also be done internally among a pair of different layers. See D3.2 for further information about

interactions among the INTER-IoT layers (D2D, N2N, MW2MW, DS2DS, AS2AS).

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

66

Figure 18: INTER-IoT SSL for a secure access to layers’ APIs Authentication

Implementation:

A browser or an external server (acting as a client in this model) intends to connect with the INTER-

IoT layer API web interface (server). This INTER-IoT web service is secured with SSL and sends a

copy of its SSL certificate to identify itself. The server or browser trying to access the INTER-IoT API

should trust the INTER-IoT SSL certificate, and send back a digitally signed acknowledgement to start

an SSL encrypted session. Encrypted data is shared between the client and the INTER-IoT web

service. Then a second security mechanism will take place, and the web interface will request an

authorized user name and associated password to access to the layer API functionality. These

credentials could be checked in an external identity server, that stores passwords and users'

permissions, through a secured SSL connection. Thus, only authorized actors will be able to use the

layer functions, with the degree of privileges and access granted to their user. Authentication after the

establishment of a secure SSL connection (and not prior to) will impede password thefts and loads of

accounts, enabling a higher degree of security.

Known uses (within the INTER-IoT):

 When an external user/actor intends to access and interact with a layer API (i.e. D2D, N2N,

MW2MW, AS2AS, DS2DS). For instance, if a platform wants to receive sensor data flows

from the INTER-IoT gateway needs to interact with the D2D API as an external user.

 With the internal interaction of INTER-IoT layers with other layers APIs (e.g AS2AS <=>

MW2MW, or any other layers’ interactions).

Identified by:

UPV

Registration Date:

17-11-2017

D5.1: Design Patterns for Interoperable IoT Systems

67

3.3.7 INTER-FW

Design Pattern

Pattern name: Configuration delegation pattern Identifier: 18

Inspired by:

 “Delegation Pattern” Object-oriented Patterns (Section: “Object-oriented Patterns “Gang of

Four””)

Related patterns:

Intent:

Configuration of multiple instances of heterogeneous IoT platforms or IoT artefacts in a single place,

abstracting from singularities of each individual case and offering a global view.

Problem & Solution:

Interoperability services management implies the availability of the configuration information of the

multiple heterogeneous original resources in a single place, to provide a central view of the different

artifacts to be connected and evaluate properly the different strategies to follow towards the best

interoperability solution.

The configuration parameters of the different platforms to be connected can differ greatly, specially

considering that the INTER-IoT approach aims at developing a future-proof interoperability solution,

and thus, not only the existing or most prominent platforms/artifacts must be considered, but also

possible new comers, expanding the number of configuration points to virtually infinite.

Exposing the configuration of the different IoT artifacts, generalizing the common points and hiding

the differences enables a general overview at different interoperability levels and, thanks to the

homogenization of the view of the heterogeneous artifacts (that can also be seen as data source at

different abstraction layers), it is also allowed the operation of the data access mechanisms (pub/sub,

query, update) or authorization actions at the highest level.

Applicability:

This pattern is applicable for providing a common interface for elements at the same abstraction level

(so-called layers in the framework of INTER-IoT). This pattern can be applied recursively, exposing a

façade common for the different layers, allowing the replication of the pattern until building a single

administration and management view for the convenience of the end-user.

For the correct applicability of the patterns, the artifacts that delegate their configuration to the façade

interface must accomplish some aspects: 1) to expose an access interface (e.g. a REST API or some

web services); 2) to share some common characteristics that are relevant for the problem being

solved (in the framework of INTER-IoT, the interoperability of IoT platforms); 3) to be able to authorise

external applications to access relevant data in the platforms.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

68

Figure 19: Configuration delegation pattern (example of a process)

Implementation:

The implementation of this pattern is done by establishing a middle point which abstracts

configuration and management of the different IoT artifacts connected, as it can be seen in the UML

diagram. In practise, this element has access to a number of common commands offered by the

artifacts through an API or an adapter, which allows the configuration of a limited homogeneous set of

aspects from a single point.

Known uses (within the INTER-IoT):

As a natural consequence of the generalization process, singularities or specialization in the artifacts

are hidden, so that only generic features are covered by this pattern. A way to partially overcome this

pitfall is to increase the number of endpoints in the artifacts interfaces, mocking or answering with a

‘not implemented’ like error when a particular feature is not available in an artifact.

Due to the complexity of the multi-layer artifacts, authorization mechanism are preferred to be

implemented only at the same layer level. Even considering this, authorization is complex, as some

layers access resources categorized in inferior layers, as in the case of services.

Identified by: Registration Date:

D5.1: Design Patterns for Interoperable IoT Systems

69

PRODEVELOP 29-11-2017

Design Pattern

Pattern name: API façade Identifier: 19

Inspired by:

 “Web API Design: Crafting Interfaces that Developers Love”[59]

Related patterns:

Intent:

Create a single unique API for IoT artifacts interoperability.

Problem & Solution:

Interoperability mechanisms are complex and very heterogeneous depending on the abstraction level

they are designed for. Operations at different interoperability levels can be dependent on libraries,

other interoperability process or simply not be available in standard web accessible interfaces.

Complex interoperability systems (such in the case of INTER-IoT) can’t be represented/exposed in a

single API but in an array of complementary systems that all need to be used to fulfil the user needs.

This pattern gives a buffer or virtual layer between the interface on top and the API implementation on

the bottom. It essentially creates a façade – a comprehensive view of what the API should be and

importantly from the perspective of the app developer and end user of the apps they create.

The developer and the app that consume the API are on top. The API façade isolates the developer

and the application and the API. Making a clean design in the facade allows you to decompose one

hard problem into a few simpler problems.

Applicability:

This pattern is applicable to homogenize the access to interfaces heterogeneous by nature, making

easier and simpler the access and comprehension on the overall goal of the system. The API façade

can also compound several atomic actions on the subsystems.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

70

Figure 20: API façade pattern (example of a process)

Implementation:

1. Design the ideal API – design the URLs, request parameters and responses,

payloads,headers, query parameters, and so on. The API design should be self-consistent.

2. Implement the design with data stubs. This allows application developers to use your API and

give you feedback even before your API is connected to internal systems.

3. Mediate or integrate between the façade and the systems.

Known uses (within the INTER-IoT):

The API façade can turn complex for the user depending on the number of subsystems that is

composed by. In the case of INTER-IoT, the heterogeneity of these systems and the depth in the

individual APIs can increase the overall learning curve.

Identified by:

PRODEVELOP

Registration Date:

29-11-2017

3.3.8 INTER-Health

Design Pattern

Pattern name: INTER-Health Pilot Integration Identifier: 15

Inspired by:

 (e/m) Health use case patterns (Section:“Use case specific patterns”)

 Enterprise Integration Patterns (Section:“Enterprise Integration Patterns”)

D5.1: Design Patterns for Interoperable IoT Systems

71

Related patterns:

 IoT Patterns: Design patterns for connected things (Section:“IoT Patterns“)

 IoT Patterns: Design patterns for IoT Infrastructure (Section: “IoT Patterns“)

 IoT Patterns: Design patterns for IoT Security (Section: “IoT Patterns“)

 IoT Patterns: Edge Based IoT Design Patterns (Section: “IoT Patterns“)

Intent:

Follow the most suitable design of the overall deployment model that fits the requirements of the

INTER-Health pilot. This requires deploying all the modules of INTER-IoT that are needed, in addition

to the existing IoT platforms, and the native applications, that are used in the pilot. Then all these

must be connected to each other according to the defined APIs, and operate together properly.

Problem & Solution:

The INTER-Health pilot integrates two existing IoT platforms: BodyCloud and universAAL, and a

native application: the Professional Web Tool. The INTER-IoT platform is used to bridge all these

together. But each platform is used to cover different scenarios, and the application must be platform-

agnostic. While BodyCloud is used to access a scalable number of mobile devices with sensors

connected to it, universAAL is used to connect a limited set of mobile devices with sensors within the

premises of the deployment. Each platform also has different installation requirements. On the other

hand the native application has to access the sensor data from these two platforms, and it also has its

own different set of installation requirements. To top it all, INTER-IoT, which will be used to bring all

components together, also has its own requirements.

The design shown here depicts how to connect all these disparate components within the premises of

the pilot partner and cover all the required sensors, in addition to provide hints as to how to install

each component according to its requirements and constraints.

Applicability:

This design pattern can be used as a starting point or inspiration for similar deployments in real-life

scenarios that present similar constraints: Installing INTER-IoT within the premises of the provider of

a certain application or set of applications, and obtaining sensor data from several IoT platforms that

cover a range of remote devices. Notice that it is not necessary that such deployment is related to e-

Health scenarios. Notice as well that this pattern is suitable for on-premises server-based installations

and not Cloud-based installations, although it should be relatively easy to adapt it to such

environments.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

72

Figure 21: Deployment model of INTER-Health

Implementation:

The hardware deployment consists of a central server machine hosted by the pilot partner where the

main backend components of the participating platforms are installed: The Professional Web Tool

native application, the BodyCloud and universAAL platforms backends, and the INTER-IoT

components bridging them.

The other hardware in the model are Mobile devices that act as Gateways for the sensors that

perform the actual measurements that are of interest to the Professional Web Tool. These run the

software applications of BodyCloud and universAAL that connect to their respective backends in the

server, and to the sensor devices to obtain their values. Notice that BodyCloud is used by the

patients, who can roam freely and therefore is connected to the server through the internet, and

D5.1: Design Patterns for Interoperable IoT Systems

73

universAAL is used by doctors whose mobile devices will always connect through the local private

network.

The remaining hardware is the sensor devices. They themselves do not connect or are related to

INTER-IoT but they rely on their connection to the universAAL and BodyCloud client applications in

the mobile devices, to which they are connected through Bluetooth. Take into account as well that

there is a “virtual” sensor that represents a questionnaire. This pattern is applicable to any other

software-only source of information, that will be managed by the appropriate client application (in this

case BodyCloud mobile app).

Known uses (within the INTER-IoT):

This pattern is followed exactly in INTER-Health, and, to some degree and with appropriate

modifications, in INTER-Domain.

Identified by:

UPV-SABIEN

Registration Date:

24-11-2017

Design Pattern

Pattern name: Integrated deployment in security-constrained environments Identifier:16

Inspired by:

 (e/m) Health use case patterns (Section:“Use case specific patterns”)

 Security Patterns (Section:“Security Patterns”)

Related patterns:

 IoT Patterns: Design patterns for IoT Infrastructure (Section:“IoT Patterns”)

 IoT Patterns: Design patterns for IoT Security (Section: “IoT Patterns”)

 Enterprise integration patterns (Section:“Enterprise Integration Patterns”)

Intent:

Determine the security restrictions imposed by the INTER-Health pilot in particular. Design the

integration and deployment of the overall pilot system to fit within these restrictions.

Problem & Solution:

In addition to the security requirements imposed by common sense, ethics, privacy concerns and

legal framework of the INTER-IoT project, there are some additional security restrictions imposed by

the scope of the INTER-Health pilot. These are determined by two main factors: the applicable laws in

the location of the deployment (Torino, Italy) and the nature of the treated data (health).

Because of these restrictions the design of the pilot deployment has to face some changes compared

to what could have been used if these restrictions did not apply. It impacts the actual physical location

of the deployed components, the technologies to use, who has access to them and how, and the

connections between them.

Applicability:

This design pattern can be used as a starting point or inspiration for similar deployments in real-life

scenarios that present similar constraints: Installing INTER-IoT for an application that deals with

personal user health data. Although the particularities of INTER-Health applied only to the legal

conditions of the pilot in Italy, it is foreseeable that a similar approach can be followed in other EU

countries, especially once the GDPR becomes active.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

74

Figure 22: Security restrictions in INTER-Health deployment model

Implementation:

An extension of the “UML representation”, i.e. the textual description of realization and architecture

(not a source code, like in GoF). The goal of this property is to clarify the diagram.

One of the main limitations imposed by the legal framework is that all components that store, to any

degree, medical or health-related personal data, must be located within the physical premises of the

responsible of the pilot. This means that all INTER-IoT components, native pilot application (the

Professional Web Tool) and the existing IoT platform backends must all run on premises. This

discards Cloud-based deployments and forces a local server-based approach.

The physical server, even though it is not necessarily located in the same physical location of the

D5.1: Design Patterns for Interoperable IoT Systems

75

users (doctors) accessing it, is located in the same private network, properly secured to give access

only to authorized personnel. This “shields” the components running on it from security threats by

leaving the protection of the data and communication between the software components therein up to

the security measures taken to protect the private, corporate network.

By securing as well network-based communications between components within that network, using

HTTPS and dedicated certificates, it achieves an additional layer of security, preventing even

authorized users, or potential attackers that infiltrate the network, from being able to intercept the data

travelling through those connections.

HTTPS is also used to secure the connections between the server and the additional devices: both

the doctors’ mobile phones, which in any case would connect from within the same private network,

and the patients’ mobile phones, which connect through the internet.

Known uses (within the INTER-IoT):

This pattern is followed exactly in INTER-Health, and, to some degree and with appropriate

modifications, in INTER-Domain.

Identified by:

UPV-SABIEN

Registration Date:

24-09-2017

3.3.9 INTER-LogP

Design Pattern

Pattern name: Geofencing pattern Identifier:14

Inspired by:

 “Geo-fence” Use Case Pattern (Section:“Use case specific patterns”)

Related patterns:

Intent:

Nowadays, geofencing of objects is a common issue of IoT systems. Within the INTER-LogP, there is

a need to detect the presence of objects inside a restricted area, e.g. truck in the port.

Problem & Solution:

The cooperation of platforms requires the triggering of certain processes/actions, as a result of

detection a specific object within a restricted/defined area.

For this purpose, four main entities must cooperate. First one is a Haulier Platform, which is publisher

of the trucks' data (including positions). Second element is the INTER-MW, which is necessary to be

the communication channel. Third entity is Port Platform, which contains two important modules: (1)

list of defined restricted areas, and (2) process that detects the event of object presence within the

defined area. This event contains a collection of information, such as time of event, object's details,

type of event, etc. Fourth element is application which monitors the events. Of course many

applications can monitor the events.

Applicability:

This pattern is used when it is necessary to detect the event of vehicle's access to an area in real

time, in order to trigger a specific action, associated with the object.

UML representation:

D5.1: Design Patterns for Interoperable IoT Systems

76

Figure 23: INTER-LogP Geofencing Pattern

Implementation:

The data of the trucks is provided by the IoT platform of the haulier company, so the port IoT platform

needs to subscribe to this data through the INTER-MW. In the IoT platform in the port there are

defined and stored all the areas where a truck can access and it has a Complex Event Processor,

which checks the information in real time. The information is stored and received by the applications

that may need it.

Known uses (within the INTER-IoT):

In the defined transport pilot, it is needed to know when a truck is near to the port (10 km distance),

inside the port, and inside the terminal. For each of these cases it is needed to define an area and

detect when the truck is inside. This information can be checked with other system, for instance, with

the automatic identification system at the port access.

Identified by:

VPF

Registration Date:

16-11-2017

3.4 Analysis of INTER-IoT Design Patterns

Analysis of all INTER-IoT Design Patterns shows that every catalog, described in section:

“State of the art - research and analysis” was helpful in the process of defining new design

patterns. It proofs, that the analysis presented in sections “Analysis of...” (subsections of

every described catalog) were accurate. It is hard to say what inspiration was the most

important. For instance, the most often used catalogs were: “Enterprise Integration Patterns”

and“SOA Patterns”, because they described most common issues, related with

communication, cooperation, etc. Nevertheless, “Security Patterns”were used only twice

because only two patterns described security issues, which are very important problem, for

example because of ethical issues. Moreover, Object-oriented Pattern was used only once

D5.1: Design Patterns for Interoperable IoT Systems

77

as an extension, but format of“Object-oriented Patterns “Gang of Four”” catalog were crucial

in defining INTER-IoT Layer Patterns format.

Very important is fact, that catalogs (described in SotA) were not the only inspiration in

defining new design patterns. Other sources were common paradigms and technologies, i.e.:

“Software - defined networking (SDN) orchestration”, “Network virtualization (NV)”, “Flow -

based programming” and “Web API Design: Crafting Interfaces that Developers Love”.

Notice, that “Ontology Patterns” were not extended in new INTER-IoT Layer Patterns

catalog. Of course, they were used in the project, but were not extended as a specific

INTER-IoT patterns. Nevertheless, ontology patterns (mainly alignment patterns) are an

integral part of translation patterns (i.e. “Alignment - based Translation Pattern” and

“Translation with central ontology”).

4 Ethics

Ethics in INTER-IoT concerns issues related with General Data Protection Regulation
(GDPR)[54]. It is EU regulation containing provisions on the protection of individuals with
regard to the processing of personal data and free flow of personal data. The purpose of the
regulation is to achieve full harmonization of substantive law within the EU and the free flow
of personal data.

The GDPR defines two types of entities that have obligations: data controllers and data
processors. Under the previous EU Data Protection Directive, only controllers could be held
liable. With the GDPR, processors now also face serious data protection requirements and
obligations. It is important, that a single entity (e.g. company) can be both both controller and
a processor, depending on the exact type and usage of data. GDPR gives definitions of
controllers and processors:

 A controller is an entity that determines the purposes, conditions, and means of the
processing of personal data. For example, educational and research private and
public institutions, healthcare services, or any business that manages the personal
data of their employees and customers.

 A data processor is an entity which processes personal data on behalf of the
controller, such as a cloud provider (for example, Software-as-a-Service companies
like a CRM software).

Notice, that INTER-IoT acts both as a controller and processor. It is a data controller,
because it handles the data related with processing of healthcare services and manages the
personal data of patients and personnel. It is also a processor, because it allows any
platform to process the mentioned healthcare data.

The main idea of GDPR is to protect personal data at every phase of data processing.
INTER-IoT Layer Patterns contains solutions related with data processing (e.g. exchange
data, translate data). Nevertheless, the most important issue that really affects the data are
patterns related with security (“CROSS Layer”) and INTER-Health (“INTER-Health”). Using
these patterns, it is possible to fulfill the main principles of the GDPR:

 Lawfulness, fairness, and transparency: personal data should be processed lawfully,
fairly, and in a transparent manner.

 Limited purpose: personal data should be collected for specified, explicit, and
legitimate purposes and not further processed in a manner that is incompatible with
those purposes

D5.1: Design Patterns for Interoperable IoT Systems

78

 Data minimisation: personal data should be adequate, relevant, and limited to which it
is necessary in relation to the purposes for which they are collected.

 Accuracy: personal data stored and managed should be accurate and, where
necessary, kept up to date.

 Storage limitation: personal data should be kept in a form which permits the
identification of data subjects for no longer than is necessary for the purposes for
which the personal data is processed.

 Confidentiality and integrity: personal data should be processed in a manner that
ensures appropriate security of the personal data, including protection against
unauthorized or unlawful processing and against accidental loss, destruction or
damage, using appropriate technical or organisational measures.

5 Conclusions

This document is part of “WP5 Methodology for the Integration of IoT Platforms” and is

strictly related with deliverables “D5.2 Full-fledged Methodology for IoT Platforms Integration

(INTER-METH)” and “D5.3 CASE tool for Automated Application of INTER-METH

Methodology”. All deliverables considers the platform integrations process.

This document presented all the process of defining INTER-IoT Layer Patterns, starting with

SotA analysis, via defining requirements based on WP3, to achieve final catalog. Every

pattern were described, using new INTER-IoT Layer Patterns format. Description contains

the solution and also the reason of necessity of creating brand new pattern, instead of using

common approaches. Moreover, pattern’s template presents its inspiration (mainly related

with SotA analysis) and example of usage within the project.

It is worth to notice, that defined design patterns are strictly related with INTER-IoT

development phase. They are very important part of documentation which allows to

understand the INTER-IoT architecture and paradigms and also enables to prepare new

components as part of the project. Described design patterns are also related with project

ethics issues.

D5.1: Design Patterns for Interoperable IoT Systems

79

6 References

[1] D3.1 Methods for Interoperability and Integration.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-oriented

Software Architecture: A System of Patterns. New York, NY, USA : John Wiley & Sons, Inc.,

1996.

[3] What are Patterns. [Online] http://hillside.net/patterns/50-patterns-library/patterns/222-

design-pattern-definition.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable

Object-oriented Software. Boston, MA, USA : Addison-Wesley Longman Publishing Co., Inc.,

1955.

[5] Kuchana, P.Software Architecture Design Patterns in Java. Auerbach Publications, 2004.

[6] E. Gamma, R, Helm, R. Johnson, L. O'Brien. Design Patterns 15 Years Later: An

Interview with Erich Gamma, Richard Helm, and Ralph Johnson. Software Development &

Management, 2009.

[7] G. Hohpe, B. Woolf. Enterprise Integration Patterns. Boston, MA, USA : Pearson

Education Inc., 2004.

[8] Enterprise Integration Patterns. [Online]

http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html.

[9] Service Oriented Architecture Patterns. [Online] http://soapatterns.org/introduction.

[10] IoT-A Project Deliverable D2.3 - Orchestration of distributed IoT service interactions.

[Online] http://www.iot-a.eu/public/public-documents/documents-1.

[11] A. L. Lemos, F. Daniel, B. Benatallah. Web Service Composition: A Survey of

Techniques and Tools. ACM Computing Surveys. 2016, Tom 48.

[12] Cancarini, P. Coordination models and languages as software integrators. ACM

Computing Surveys. 1996, Tom 28.

[13] The Reactive Manifesto. [Online] http://www.reactivemanifesto.org.

[14] R. Kuhn, B. Hanafee, J. Allen. Reactive Design Patterns. Manning Publications, 2016.

[15] Y. Aridor, D. Lange. Agent Design Patterns: Elements of Agent Application Design.

AGENTS '98 Proceedings of the Second International Conference on Autonomous Agents.

1988.

[16] D. Duego, M. Weiss, E. Kendall. Reusable Patterns for Agent Coordination. [aut.

książki] M. Klusch and R. Tolksdorf A. Omicini F. Zambonelli. Coordination of Internet

Agents: Models, Technologies, and Applications. Springer, 2001.

[17] Kendall, E.A. Patterns of Intelligent and Mobile Agents. Second Intl. Conference on

Autonomous Agents. 1998.

[18] Role Models: Patterns of Agent System Analysis and Design. ACM, Agent Systems and

Applications/Mobile Agents (ASA/MA-99). 1999.

D5.1: Design Patterns for Interoperable IoT Systems

80

[19] Tolksdorf, R. Coordination patterns of mobile information agents. Cooperative

Information Agents II. 1998, Volume: 1435.

[20] Weiss, M. Pattern-Driven Design of Agent Systems: Approach and Case. Conference

on Advanced Information Systems Engineering (CAiSE). 2003, Volume: LNCS 2681.

[21] Cancarini, P. Coordination models and languages as software integrators. ACM

Computing Surveys. 1996, Volume: 28.

[22] M. Luck, P. McBurney, C. Preist. A Manifesto for Agent Technology: Towards Next

Generation Computing. Autonomous Agents and Multi-Agent Systems. 2004, Volume: 9.

[23] Tveit, A. A survey of Agent-Oriented Software Engineering. First NTNU CSGS

Conference. 2001.

[24] M. Kolp, P. Giorgini, J. Mylopoulos. A Goal-Based Organizational Perspective on

Multi-Agent Architectures. Eighth Intl. Workshop on Agent. 2001.

[25] S. Staab, M. Erdmann, A. Maedche. Engineering ontologies using semantic patterns.

Proceedings of the IJCAI-01 Workshop on E-Business & the Intelligent Web. 2001.

[26] ONTOLOGY DESIGN PATTERNS (ODPs) PUBLIC CATALOG. [Online]

http://odps.sourceforge.net/odp/html/index.html.

[27] E. Blomqvist, K. Sandkuhl. Patterns in Ontology Engineering: Classification of

Ontology Patterns. Proceedings of the Seventh International Conference on Enterprise

Information Systems. 2005.

[28] Gangemi, A. Ontology Design Patterns for Semantic Web Content. International

Semantic Web Conference. 2005, Volume 3729.

[29] F. Scharffe, O. Zamazal, D. Fensel. Ontology alignment design patterns. Knowledge

and Information Systems. 2014, Volume: 40.

[30] Ontology community portal. [Online]

http://plasma.dimes.unical.it/events/I4T2016/PDF/SoheilQanbari.pdf.

[31] Expressive and Declarative Ontology Alignment Language. [Online]

http://alignapi.gforge.inria.fr/edoal.html.

[32] Proposed Alignment ODPs. [Online]

http://ontologydesignpatterns.org/wiki/Submissions:AlignmentODPs.

[33] Architectural Design Patterns for an IoT Platform. [Online]

http://insights.mindstix.com/design-patterns-for-your-iot-architecture/.

[34] Koster, M. Design Patterns for an Internet Of Things A Design Pattern Framework for

IoT Architecture. [Online] http://community.arm.com/groups/internet-of-

things/blog/2014/05/27/design-patterns-for-an-internet-of-things.

[35] Qanbari, S.IoT Design Patterns: Computational Constructs to Design, Build and

Engineer Edge Applications. Proc. of IEEE IoTDI, 2015.

[36] IoT Overview - Provisioning. [Online] https://cloud.google.com/solutions/iot-

overview#provisioning.

[37] Core Security Patterns. [Online] http://www.coresecuritypatterns.com/patterns.htm.

D5.1: Design Patterns for Interoperable IoT Systems

81

[38] The Open Group Security Design Patterns. [Online]

http://www.opengroup.org/security/gsp.htm.

[39] Security Pattern Catalog. [Online]

http://www.munawarhafiz.com/securitypatterncatalog/index.php.

[40] N. Yoshioka, H. Washizaki, K. Maruyama. A survey on security patterns. Progress in

Informatics. 2008, Volume: 5.

[41] Schumacher, M.Security Patterns: Integrating Security And Systems Engineering. John

Wiley & Sons Inc., 2006.

[42] Escribano, B. Privacy and security in the Internet of Thing: challenge or opportunity?

[Online] http://datonomy.eu/2014/11/28/privacy-and-security-in-the-internet-of-things-

challenge-or-opportunity/.

[43] Ajit Jha, Sunil M C. Security considerations for Internet of Things. [Online]

http://www.lnttechservices.com/sites/default/files/whitepapers/2017-07/whitepaper_security-

considerations-for-internet-of-things.pdf.

[44] Security Guidance for the Early Adopters of the Internet of Things (IoT). [Online]

https://downloads.cloudsecurityalliance.org/whitepapers/Security_Guidance_for_Early_Adopt

ers_of_the_Internet_of_Things.pdf.

[45] R. Rodrigo, P. Najera, J. Lopez.Securing the Internet of Things. Computer Journal.

2011, Volume: 44.

[46] Muji, M. Best Practices in the Design and Development of Health Care Information

Systems. 1st International Conference on Advancements of Medicine and Health Care

through Technology, MediTech2007. 2007.

[47] Oláh, P. A Database Design Pattern for Structuring Hierarchical Medical Data. Acta

Medica Marisiensis. 2012, Volume: 58.

[48] C. Ó Riain, M. Helfert. An evaluation of data quality related. [Online]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.6924&rep=rep1&type=pdf.

[49] Mauro, C. Standardized Device Services – A Design Pattern for Service Oriented

Integration of Medical Devices. Proceedings of the 43rd Hawaii International Conference on

System Sciences. 2010.

[50] Fowler, M. Writing Software Patterns. [Online] 2006.

https://martinfowler.com/articles/writingPatterns.html#CommonPatternForms.

[51] Pattern Language. [Online] http://www.patternlanguage.com/.

[52] Gang-of-four template. [Online] http://hillside.net/index.php/gang-of-four-template.

[53] Catalog of Patterns of Enterprise Application Architecture. [Online]

https://martinfowler.com/eaaCatalog/.

[54] Software-defined networking (SDN) orchestration. [Online]

https://www.sdxcentral.com/sdn/definitions/what-is-sdn-orchestration/.

[55] Network virtualization (NV). [Online] https://www.sdxcentral.com/sdn/network-

virtualization/definitions/whats-network-virtualization/.

[56] FIWARE homepag. [Online] https://www.fiware.org/.

D5.1: Design Patterns for Interoperable IoT Systems

82

[57] Universal project homepage. [Online] http://universaal.sintef9013.com/entry/.

[58] Flow-based programming. [Online] http://www.jpaulmorrison.com/fbp/.

[59] Web API Design: Crafting Interfaces that Developers Love. [Online]

https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf.

[60] General Data Protection Regulation. [Online] https://www.eugdpr.org/.

